
FLTK 1.0.11 Programming Manual
Revision 18

Written by Michael Sweet, Craig P. Earls, and Bill Spitzak
Copyright 1998−2001 by Bill Spitzak and Others.

Table of Contents
Preface..1

Organization...1
Conventions...2
Abbreviations...2
Copyrights and Trademarks...2

1 − Introduction to FLTK ..3
History of FLTK..3
Features..4
Licensing..5
What Does "FLTK" Mean?...5
Building and Installing FLTK Under UNIX..5
Building FLTK Under Microsoft Windows..6
Building FLTK Under OS/2..6
Internet Resources..7
Reporting Bugs..7

2 − FLTK Basics..9
Naming...9
Header Files...9
Compiling Programs with Standard Compilers...10
Compiling Programs with Microsoft Visual C++..10
Writing Your First FLTK Program..10

3 − Common Widgets and Attributes..13
Buttons...13
Text..14
Valuators..14
Groups..15
Setting the Size and Position of Widgets...15
Colors...16
Box Types..16
Labels and Label Types...18
Callbacks..20
Shortcuts..21

4 − Designing a Simple Text Editor...23
Determining the Goals of the Text Editor..23
Designing the Main Window...23
Variables..24
Menubars and Menus...24
Editing the Text...25
The Replace Dialog..25
Callbacks..25
Other Functions..30
Compiling the Editor...32
The Final Product...32

FLTK 1.0.11 Programming Manual

i

Table of Contents
5 − Drawing Things in FLTK ..35

When Can You Draw Things in FLTK?..35
FLTK Drawing Functions..35
Images..41
class Fl_Pixmap...44

6 − Handling Events..47
The FLTK Event Model...47
Mouse Events...47
Focus Events..48
Keyboard Events..49
Widget Events..49
Clipboard Events..50
Fl::event_*() methods..50
Event Propagation..50
FLTK Compose−Character Sequences..51

7 − Adding and Extending Widgets...53
Subclassing..53
Making a Subclass of Fl_Widget...53
The Constructor...54
Protected Methods of Fl_Widget...54
Handling Events...56
Drawing the Widget...57
Resizing the Widget...57
Making a Composite Widget...58
Cut and Paste Support..59
Making a subclass of Fl_Window..59

8 − Programming with FLUID ..61
What is FLUID?...61
Running FLUID Under UNIX...62
Running FLUID Under Microsoft Windows...63
Compiling .fl files..63
A Short Tutorial...63
FLUID Reference...72
Internationalization with FLUID...82

9 − Using OpenGL..85
Using OpenGL in FLTK..85
Making a Subclass of Fl_Gl_Window...85
Using OpenGL in Normal FLTK Windows..87
OpenGL Drawing Functions..88
Speeding up OpenGL...89
Using OpenGL Optimizer with FLTK...90

A − Widget Reference...93
Alphabetical List of Classes...93

FLTK 1.0.11 Programming Manual

ii

Table of Contents
Class Hierarchy..94
class Fl_Adjuster..96
class Fl_Box...97
class Fl_Browser..98
class Fl_Browser_..102
class Fl_Button..108
class Fl_Chart..111
class Fl_Check_Button..114
class Fl_Choice..115
class Fl_Clock..117
class Fl_Color_Chooser...119
class Fl_Counter..121
class Fl_Dial..122
class Fl_Double_Window..124
class Fl_End...125
class Fl_Float_Input...126
class Fl_Free..127
class Fl_Gl_Window..129
class Fl_Group...133
class Fl_Hold_Browser..136
class Fl_Input...138
class Fl_Input_...143
class Fl_Int_Input..146
class Fl_Light_Button..147
class Fl_Menu_..148
class Fl_Menu_Bar..152
class Fl_Menu_Button...154
struct Fl_Menu_Item..156
class Fl_Menu_Window..162
class Fl_Multi_Browser...163
class Fl_Multiline_Input..165
class Fl_Multiline_Output...166
class Fl_Output..167
class Fl_Overlay_Window...169
class Fl_Pack..170
class Fl_Positioner...171
class Fl_Repeat_Button...173
class Fl_Return_Button..174
class Fl_Roller...175
class Fl_Round_Button..176
class Fl_Scroll..177
class Fl_Scrollbar...180
class Fl_Secret_Input...182
class Fl_Select_Browser..183
class Fl_Single_Window...185
class Fl_Slider..186
class Fl_Tabs..188
class Fl_Tile...190

FLTK 1.0.11 Programming Manual

iii

Table of Contents
class Fl_Timer..192
class Fl_Valuator...194
class Fl_Value_Input...197
class Fl_Value_Output...199
class Fl_Value_Slider..201
class Fl_Widget..203
class Fl_Window..209

B − Function Reference..215
Functions..215
Fl:: Methods...221

C − FLTK Enumerations...235
Version Numbers...235
Events...235
Callback "When" Conditions...236
Fl::event_button() Values..236
Fl::event_key() Values...236
Fl::event_state() Values...237
Alignment Values..237
Fonts...238
Colors...238
Cursors...239
FD "When" Conditions..239
Damage Masks...239

D − GLUT Compatibility ...241
Using the GLUT Compatibility Header File...241
Known Problems..241
Mixing GLUT and FLTK Code...242
class Fl_Glut_Window..244

E − Forms Compatibility..247
Importing Forms Layout Files...247
Using the Compatibility Header File...247
Problems You Will Encounter...248
Additional Notes..249

F − Operating System Issues..253
X−Specific Interface..253
WIN32−Specific Interface...258

G − Software License..261

FLTK 1.0.11 Programming Manual

iv

Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.0.11, a C++ Graphical User Interface
("GUI") toolkit for UNIX and Microsoft Windows. Each of the chapters in this manual is designed as a
tutorial for using FLTK, while the appendices provide a convenient reference for all FLTK widgets,
functions, and operating system interfaces.

Organization

This manual is organized into the following chapters and appendices:

Chapter 1 − Introduction to FLTK•
Chapter 2 − FLTK Basics•
Chapter 3 − Common Widgets and Attributes•
Chapter 4 − Designing a Simple Text Editor•
Chapter 5 − Drawing Things in FLTK•
Chapter 6 − Handling Events•
Chapter 7 − Extending and Adding Widgets•
Chapter 8 − Programming With FLUID•
Chapter 9 − Using OpenGL•
Appendix A − Widget Reference•
Appendix B − Function Reference•
Appendix C − Enumeration Reference•
Appendix D − GLUT Compatibility•
Appendix E − Forms Compatibility•
Appendix F − Operating System Issues•

Preface 1

Appendix G − Software License•

Conventions

The following typeface conventions are used in this manual:

Function and constant names are shown in bold courier type•
Code samples and commands are shown in regular courier type•

Abbreviations

The following abbreviations are used in this manual:

X11
The X Window System version 11.

Xlib
The X Window System interface library.

WIN32
The Microsoft Windows 32−bit Application Programmer's Interface.

Copyrights and Trademarks

FLTK is Copyright 1998−2000 by Bill Spitzak and others. Use and distribution of FLTK is governed by the
GNU Library General Public License, located in Appendix G.

UNIX is a registered trademark of the X Open Group, Inc. Microsoft and Windows are registered trademarks
of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics, Inc.

FLTK 1.0.11 Programming Manual

2 Conventions

1 − Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") is a LGPL'd C++ graphical user interface toolkit for
X (UNIX®), OpenGL®, and Microsoft® Windows® NT 4.0, 95, or 98. It was originally developed by Mr.
Bill Spitzak and is currently maintained by a small group of developers across the world with a central
repository in the US.

History of FLTK

It has always been Bill's belief that the GUI API of all modern systems is much too high level. Toolkits (even
FL) are not what should be provided and documented as part of an operating system. The system only has to
provide arbitrary shaped but featureless windows, a powerful set of graphics drawing calls, and a simple
unalterable method of delivering events to the owners of the windows. NeXT (if you ignored NextStep)
provided this, but they chose to hide it and tried to push their own baroque toolkit instead...

Many of the ideas in FLTK were developed on a NeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views". Here he came up with passing events downward in the tree and having the handle routine
return a value indicating the used the event, and the table−driven menus. In general he was trying to prove
that complex UI ideas could be entirely implemented in a user space toolkit, with no knowledge or support by
the system.

After going to film school for a few years, Bill worked at Sun Microsystems on the (doomed) NeWS project.
Here he found an even better and cleaner windowing system, and he reimplemented "views" atop that. NeWS
did have an unnecessarily complex method of delivering events which hurt it. But the designers did admit
that perhaps the user could write just as good of a button as they could, and officially exposed the lower level
interface.

1 − Introduction to FLTK 3

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X is the
"window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to his work, but provided
many more widgets, since it was used in many real applications, rather then as theoretical work. He decided
to use Forms, except he integrated his table−driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GLX, portability, and a desire to use C++ subclassing required a rewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changes it made
it impossible to recompile any Forms objects. Since it was incompatible anyway, Bill decided to incorporate
his older ideas as much as possible by simplifying the lower level interface and the event passing
mechanisim.

Bill received permission to release it for free on the Internet, with the GNU general public license. Response
from Internet users indicated that the Linux market dwarfed the SGI and high−speed GL market, so he
rewrote it to use X for all drawing, greatly speeding it up on these machines. That is the version you have
now.

Digital Domain has since withdrawn support for FLTK. While Bill is no longer able to actively develop it, he
still contributes to FLTK in his free time and is a part of the FLTK development team.

Features

FLTK was designed to be statically linked. This was done by splitting it into many small objects and
desigining it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy−to−install program, or to modify FLTK to the
exact requirements of your application, without worrying about bloat. FLTK works fine as a shared library,
though, and has started being included on Linux distributions.

Here are some of the core features unique to FLTK:

sizeof(Fl_Widget) == 40 to 48.•
The "core" (the "hello" program compiled & linked with a static FLTK library using gcc on a 486
and then stripped) is 110K.

•

The FLUID program (which includes every widget) is 372k. •
Written directly atop Xlib (or WIN32) for maximum speed, and carefully optimized for code size and
performance.

•

Precise low−level compatability between the X11 and WIN32 version (only about 10% of the code is
different).

•

Interactive user interface builder program. Output is human−readable and editable C++ source code.•
Support for X11 overlay hardware (emulation if none and under WIN32.)•
Very small & fast portable 2−D drawing library to hide Xlib and WIN32.•
OpenGL/Mesa drawing area widget.•
Support for OpenGL overlay hardware on both X11 and WIN32. Emulation if none.•
Text input fields with Emacs key bindings, X cut & paste, and foreign letter compose!•
Compatibility header file for the GLUT library.•
Compatibility header file for the XForms library.•
Much too much to list here...•

FLTK 1.0.11 Programming Manual

4 Features

Licensing

FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library General
Public License. Contrary to popular belief, it can be used in commercial software! (Even Bill Gates could use
it.)

What Does "FLTK" Mean?

FLTK was originally designed to be compatible with the Forms Library written for SGI machines. In that
library all the functions and structures started with "fl_". This naming was extended to all new methods and
widgets in the C++ library, and this prefix was taken as the name of the library. It is almost impossible to
search for "FL" on the Internet, due to the fact that it is also the abbreviation for Florida. After much debating
and searching for a new name for the toolkit, which was already in use by several people, Bill came up with
"FLTK", and even a bogus excuse that it stands for "The Fast Light Tool Kit".

Building and Installing FLTK Under UNIX

In most cases you can just type "make". This will run configure with the default of no options and then
compile everything.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11 and OpenGL (or Mesa) header and library files. If these cannot be found in
the standard include/library locations you'll need to define the CFLAGS, CXXFLAGS, and
LDFLAGS environment variables. For the Bourne and Korn shells you'd use:

CFLAGS=−Iincludedir; export CFLAGS
CXXFLAGS=−Iincludedir; export CXXFLAGS
LDFLAGS=−Llibdir; export LDFLAGS

For C shell and tcsh, use:

setenv CFLAGS "−Iincludedir"
setenv CXXFLAGS "−Iincludedir"
setenv LDFLAGS "−Llibdir"

By default configure will look for a C++ compiler named CC, c++, g++, or gcc in that order. To use another
compiler you need to set the CXX environment variable:

CXX=xlC; export xlC
setenv CXX "xlC"

The CC environment variable can also be used to override the default C compiler (cc or gcc), which is used
for a few FLTK source files.

You can run configure yourself to get the exact setup you need. Type "./configure <options>", where options
are:

−−enable−debug
Enable debugging code & symbols

−−enable−shared
Enable generation of shared libraries

FLTK 1.0.11 Programming Manual

Licensing 5

−−bindir=/path
Set the location for executables [default = /usr/local/bin]

−−libdir=/path
Set the location for libraries [default = /usr/local/lib]

−−includedir=/path
Set the location for include files. [default = /usr/local/include]

−−prefix=/dir
Set the directory prefix for files [default = /usr/local]

When the configure script is done you can just run the "make" command. This will build the library, FLUID
tool, and all of the test programs.

To install the library, become root and type "make install". This will copy the "fluid" executable to "bindir",
the header files to "includedir", and the library files to "libdir".

Building FLTK Under Microsoft Windows

There are two ways to build FLTK under Microsoft Windows. The first is to use the Visual C++ 5.0 project
files under the "visualc" directory. Just open (or double−click on) the "fltk.dsw" file to get the whole
shebang.

The second method is to use a GNU−based development tool with the files in the "makefiles" directory. To
build using one of these tools simply copy the appropriate makeinclude and config files to the main directory
and do a make:

copy makefiles\Makefile.<env> Makefile
make

Using the Visual C++ DLL Library

The "fltkdll.dsp" project file builds a DLL−version of the FLTK library. Because of name mangling
differences between PC compilers (even between different versions of Visual C++!) you can only use the
DLL that is generated with the same version compiler that you built it with.

When compiling an application or DLL that uses the FLTK DLL, you will need to define the
FL_DLL preprocessor symbol to get the correct linkage commands embedded within the FLTK header files.

Building FLTK Under OS/2

The current OS/2 build requires XFree86 for OS/2 to work. A native Presentation Manager version has not
been implemented yet (volunteers are welcome!).

The current set of Makefiles/configuration failes assumes that EMX 0.9d and libExt (from
posix2.sourceforge.net) is installed.

To build the XFree86 version of FLTK for OS/2, copy the appropriate makeinclude and config files to the
main directory and do a make:

copy makefiles\Makefile.os2x Makefile
make

FLTK 1.0.11 Programming Manual

6 Building FLTK Under Microsoft Windows

http://posix2.sourceforge.net

Internet Resources

FLTK is available on the 'net in a bunch of locations:

WWW
http://www.fltk.org

FTP
California, USA (ftp.fltk.org)
Maryland, USA (ftp2.fltk.org)
Espoo, Finland (ftp.funet.fi)
Germany (linux.mathematik.tu−darmstadt.de)
Austria (gd.tuwien.ac.at)

EMail
fltk@fltk.org [see instructions below]
fltk−bugs@fltk.org [for reporting bugs]

To send a message to the FLTK mailing list ("fltk@fltk.org") you must first join the list. Non−member
submissions are blocked to avoid problems with unsolicited email.

To join the FLTK mailing list, send a message to "majordomo@fltk.org" with "subscribe fltk" in the message
body. A digest of this list is available by subscribing to the "fltk−digest" mailing list.

Reporting Bugs

To report a bug in FLTK, send an email to "fltk−bugs@fltk.org". Please include the FLTK version, operating
system & version, and compiler that you are using when describing the bug or problem.

For general support and questions, please use the FLTK mailing list at "fltk@fltk.org".

FLTK 1.0.11 Programming Manual

Internet Resources 7

http://www.fltk.org
ftp://ftp.fltk.org/pub/fltk
ftp://ftp2.fltk.org/pub/fltk
ftp://ftp.funet.fi/pub/mirrors/ftp.fltk.org/pub/fltk
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
ftp://gd.tuwien.ac.at/hci/fltk
mailto:fltk@fltk.org
mailto:fltk-bugs@fltk.org

FLTK 1.0.11 Programming Manual

8 Internet Resources

2 − FLTK Basics

This chapter will teach you the basics of compiling programs that use FLTK.

Naming

All public symbols in FLTK start with the characters 'F' and 'L':

Functions are either Fl::foo() or fl_foo(). •
Class and type names are capitalized: Fl_Foo. •
Constants and enumerations are uppercase: FL_FOO. •
All header files start with <FL/...>. •

Header Files

The proper way to include FLTK header files is:

#include <FL/Fl_xyz.H>

Microsoft Windows developers please note: case *is* significant under other operating systems, and the C
standard uses the forward slash (/) to separate directories. Do not do any of the following:

#include <FL\Fl_xyz.H>
#include <fl/fl_xyz.h>
#include <Fl/fl_xyz.h>

2 − FLTK Basics 9

Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. This is usually done using the −I option:

CC −I/usr/local/include ...
gcc −I/usr/local/include ...

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... −L/usr/local/lib −lfltk −lXext −lX11 −lm
gcc ... −L/usr/local/lib −lfltk −lXext −lX11 −lm

Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done by
selecting "Settings" from the "Project" menu and then changing the "Preprocessor" settings under the
"C/C++" tab. You will also need to add the FLTK and WinSock (WSOCK32.LIB) libraries to the "Link"
settings.

You can build your Microsoft Windows applications as Console or WIN32 applications. If you want to use
the standard C main() function as the entry point, FLTK includes a WinMain() function that will call
your main() function for you.

Note: The Visual C++ 5.0 optimizer is known to cause problems with many programs. We only recommend
using the "Favor Small Code" optimization setting. The Visual C++ 6.0 optimizer seems to be much better
and can be used with the "optimized for speed" setting.

Writing Your First FLTK Program

All programs must include the file <FL/Fl.H>. In addition the program must include a header file for each
FLTK class it uses. Listing 1 shows a simple "Hello, World!" program that uses FLTK to display the
window.

Listing 1 − "hello.cxx"

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>

int main(int argc, char **argv) {
 Fl_Window *window = new Fl_Window(300,180);
 Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");
 box−>box(FL_UP_BOX);
 box−>labelsize(36);
 box−>labelfont(FL_BOLD+FL_ITALIC);
 box−>labeltype(FL_SHADOW_LABEL);
 window−>end();
 window−>show(argc, argv);
 return Fl::run();
}

After including the required header files, the program then creates a window:

FLTK 1.0.11 Programming Manual

10 Compiling Programs with Standard Compilers

Fl_Window *window = new Fl_Window(300,180);

and a box with the "Hello, World!" string in it:

Fl_Box *box = new Fl_Box(20,40,260,100,"Hello, World!");

Next, we set the type of box and the size, font, and style of the label:

box−>box(FL_UP_BOX);
box−> labelsize(36);
box−> labelfont(FL_BOLD+FL_ITALIC);
box−> labeltype(FL_SHADOW_LABEL);

Finally, we show the window and enter the FLTK event loop:

window−> end();
window−> show(argc, argv);
return Fl::run();

The resulting program will display the window below. You can quit the program by closing the window or
pressing the ESCape key.

Creating the Widgets

The widgets are created using the C++ new operator. For most widgets the arguments to the constructor are:

Fl_Widget(x, y, width, height, label)

The x and y parameters determine where the widget or window is placed on the screen. In FLTK the top left
corner of the window or screen is the origin (i.e. x = 0, y = 0) and the units are in pixels.

The width and height parameters determine the size of the widget or window in pixels. The maximum
widget size is typically governed by the underlying window system or hardware.

label is a pointer to a character string to label the widget with or NULL. If not specified the label defaults to
NULL. The label string must be in static storage such as a string constant because FLTK does not make a
copy of it − it just uses the pointer.

FLTK 1.0.11 Programming Manual

Writing Your First FLTK Program 11

Get/Set Methods

box−>box(FL_UP_BOX) sets the type of box the Fl_Box draws, changing it from the default of
FL_NO_BOX, which means that no box is drawn. In our "Hello, World!" example we use FL_UP_BOX,
which means that a raised button border will be drawn around the widget. You can learn more about boxtypes
in Chapter 3.

You could examine the boxtype in by doing box−>box(). Fltk uses method name overloading to make
short names for get/set methods. A "set" method is always of the form "void name(type)", and a "get"
method is always of the form "type name() const".

Redrawing After Changing Attributes

Almost all of the set/get pairs are very fast, short inline functions and thus very efficient. However, the "set"
methods do not call redraw() − you have to call it yourself. This greatly reduces code size and execution
time. The only common exception is value() which calls redraw() if necessary.

Labels

All widgets support labels. In the case of window widgets, the label is used for the label in the title bar. Our
example program calls the labelfont, labelsize, and labeltype methods.

The labelfont method sets the typeface and style that is used for the label, which for this example we are
using FL_BOLD and FL_ITALIC. You can also specify typefaces directly.

The labelsize method sets the height of the font in pixels.

The labeltype method sets the type of label. FLTK supports normal, embossed, shadowed, symbol, and
image labels internally, and more types can be added as desired.

A complete list of all label options can be found in Chapter 3.

Showing the Window

The show() method shows the widget or window. For windows you can also provide the command−line
arguments to allow users to customize the appearance, size, and position of your windows.

The Main Event Loop

FLTK provides the Fl:run() method to enter a standard event processing loop. This is equivalent to the
following code:

while (Fl::wait());

Fl::run() does not return until all of the windows under FLTK control are closed by the user or your
program.

FLTK 1.0.11 Programming Manual

12 Writing Your First FLTK Program

3 − Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set the
standard attributes.

Buttons

FLTK provides many types of buttons:

Fl_Button − A standard push button. •
Fl_Check_Button − A button with a check box. •
Fl_Light_Button − A push button with a light. •
Fl_Repeat_Button − A push button that repeats when held. •
Fl_Return_Button − A push button that is activated by the Enter key. •
Fl_Round_Button − A button with a check circle. •

For all of these buttons you just need to include the corresponding <FL/Fl_xyz_Button.H> header file.
The constructor takes the bounding box of the button and optionally a label string:

3 − Common Widgets and Attributes 13

Fl_Button *button = new Fl_Button(x, y, width, height, "label");
Fl_Light_Button *lbutton = new Fl_Light_Button(x, y, width, height);
Fl_Round_Button *rbutton = new Fl_Round_Button(x, y, width, height, "label");

Each button has an associated type() which allows it to behave as a push button, toggle button, or radio
button:

button−>type(0);
lbutton−>type(FL_TOGGLE_BUTTON);
rbutton−>type(FL_RADIO_BUTTON);

For toggle and radio buttons, the value() method returns the current button state (0 = off, 1 = on). The
set() and clear() methods can be used on toggle buttons to turn a toggle button on or off, respectively.
Radio buttons can be turned on with the setonly() method; this will also turn off other radio buttons in
the same group.

Text

FLTK provides several text widgets for displaying and receiving text:

Fl_Input − A standard one−line text input field. •
Fl_Output − A standard one−line text output field. •
Fl_Multiline_Input − A standard multi−line text input field. •
Fl_Multiline_Output − A standard multi−line text output field. •

The Fl_Output and Fl_Multiline_Output widgets allow the user to copy text from the output field
but not change it.

The value() method is used to get or set the string that is displayed:

Fl_Input *input = new Fl_Input(x, y, width, height, "label");
input−>value("Now is the time for all good men...");

The string is copied to the widget's own storage when you set the value() of the widget.

Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following
valuators:

Fl_Counter − A widget with arrow buttons that shows the current value. •
Fl_Dial − A round knob. •
Fl_Roller − An SGI−like dolly widget. •
Fl_Scrollbar − A standard scrollbar widget. •
Fl_Slider − A scrollbar with a knob. •
Fl_Value_Slider − A slider that shows the current value. •

FLTK 1.0.11 Programming Manual

14 Text

The value() method gets and sets the current value of the widget. The minimum() and maximum()
methods set the range of values that are reported by the widget.

Groups

The Fl_Group widget class is used as a general purpose "container" widget. Besides grouping radio
buttons, the groups are used to encapsulate windows, tabs, and scrolled windows. The following group
classes are available with FLTK:

Fl_Double_Window − A double−buffered window on the screen. •
Fl_Gl_Window − An OpenGL window on the screen. •
Fl_Group − The base container class; can be used to group any widgets together. •
Fl_Scroll − A scrolled window area. •
Fl_Tabs − Displays child widgets as tabs. •
Fl_Window − A window on the screen. •

Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. You can access them with the x(),
y(), w(), and h() methods.

FLTK 1.0.11 Programming Manual

Groups 15

You can change the size and position by using the position(), resize(), and size() methods:

button−>position(x, y);
group−>resize(x, y, width, height);
window−>size(width, height);

If you change a widget's size or position after it is displayed you will have to call redraw() on the widget's
parent.

Colors

FLTK stores the colors of widgets as an 8−bit number that is an index into a color palette of 256 colors. This
is not the X or WIN32 colormap, but instead is an internal table with fixed contents.

There are symbols for naming some of the more common colors:

FL_BLACK (this is the default label color)•
FL_RED•
FL_GREEN•
FL_YELLOW•
FL_BLUE•
FL_MAGENTA•
FL_CYAN•
FL_WHITE (this is the default background color of text widgets)•
FL_GRAY (this is the default background color of most widgets)•

The widget color can be set using the color() method:
button−>color(FL_RED);

Similarly, the label color can be set using the labelcolor() method:

button−>labelcolor(FL_WHITE);

Box Types

The type Fl_Boxtype stored and returned in Fl_Widget::box() is an enumeration defined in
<Enumerations.H>:

FLTK 1.0.11 Programming Manual

16 Colors

FL_NO_BOX means nothing is drawn at all, so whatever is already on the screen remains. The
FL_..._FRAME types only draw their edges, leaving the interior unchanged. In the above diagram the blue
color is the area that is not drawn by the box.

Making your own Boxtypes

Warning: this interface may change in future versions of fltk!

You can define your own boxtypes by making a small function that draws the box and adding it to the table
of boxtypes.

The Drawing Function

The drawing function is passed the bounding box and background color for the widget:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
...
}

A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_draw(int x, int y, int w, int h, Fl_Color c) {
 fl_color(c);
 fl_rectf(x, y, w, h);
 fl_color(FL_BLACK);
 fl_rect(x, y, w, h);
}

FLTK 1.0.11 Programming Manual

Box Types 17

Adding Your Box Type

The Fl::set_boxtype() method adds or replaces the specified box type:

#define XYZ_BOX FL_FREE_BOXTYPE

Fl::set_boxtype(XYZ_BOX, xyz_draw, 1, 1, 2, 2);

The last 4 arguments to Fl::set_boxtype() are the offsets for the bounding box that should be
subtracted when drawing the label inside the box.

Labels and Label Types

The label(), align(), labelfont(), labelsize(), and labeltype() methods control the
labeling of widgets.

label()

The label() method sets the string that is displayed for the label. For the FL_SYMBOL_LABEL and image
label types the string contains the actual symbol or image data.

align()

The align() method positions the label. The following constants are defined (they may be OR'd together
as needed):

FL_ALIGN_CENTER − center the label in the widget. •
FL_ALIGN_TOP − align the label at the top of the widget. •
FL_ALIGN_BOTTOM − align the label at the bottom of the widget. •
FL_ALIGN_LEFT − align the label to the left of the widget. •
FL_ALIGN_RIGHT − align the label to the right of the widget. •
FL_ALIGN_INSIDE − align the label inside the widget. •
FL_ALIGN_CLIP − clip the label to the widget's bounding box. •
FL_ALIGN_WRAP − wrap the label text as needed. •

labeltype()

The labeltype() method sets the type of the label. The following standard label types are included:

FL_NORMAL_LABEL − draws the text. •
FL_NO_LABEL − does nothing •
FL_SYMBOL_LABEL − draws "@xyz" labels, see " Symbol Labels" •
FL_SHADOW_LABEL − draws a drop shadow under the text •
FL_ENGRAVED_LABEL − draws edges as though the text is engraved •
FL_EMBOSSED_LABEL − draws edges as thought the text is raised •

To make bitmaps or pixmaps you use a method on the Fl_Bitmap or Fl_Pixmap objects.

FLTK 1.0.11 Programming Manual

18 Box Types

Making Your Own Label Types

Warning: this interface is changing in FLTK 2.0!

Label types are actually indexes into a table of functions that draw them. The primary purpose of this is to let
you reuse the label() pointer as a pointer to arbitrary data such as a bitmap or pixmap. You can also use
this to draw the labels in ways inaccessible through the fl_font mechanisim (e.g.
FL_ENGRAVED_LABEL) or with program−generated letters or symbology.

Label Type Functions

To setup your own label type you will need to write two functions to draw and measure the label. The draw
function is called with a pointer to a Fl_Label structure containing the label information, the bounding box
for the label, and the label alignment:

void xyz_draw(Fl_Label *label, int x, int y, int w, int h, Fl_Align align) {
...
}

The label should be drawn inside this bounding box, even if FL_ALIGN_INSIDE is not enabled. The
function is not called if the label value is NULL.

The measure function is called with a pointer to a Fl_Label structure and references to the width and
height:

void xyz_measure(Fl_Label *label, int &w, int &h) {
...
}

It should measure the size of the label and set w and h to the size it will occupy.

Adding Your Label Type

The Fl::set_labeltype method creates a label type using your draw and measure functions:

#define XYZ_LABEL FL_FREE_LABELTYPE

Fl::set_labeltype(XYZ_LABEL, xyz_draw, xyz_measure);

The label type number n can be any integer value starting at the constant FL_FREE_LABELTYPE. Once you
have added the label type you can use the labeltype() method to select your label type.

The Fl::set_labeltype method can also be used to overload an existing label type such as
FL_NORMAL_LABEL.

Symbol Labels

The FL_SYMBOL_LABEL label type uses the label() string to look up a small drawing procedure in a
hash table. For historical reasons the string always starts with '@'; if it starts with something else (or the
symbol is not found) the label is drawn normally:

FLTK 1.0.11 Programming Manual

Labels and Label Types 19

The @ sign may be followed by the following optional "formatting" characters, in this order:

'#' forces square scaling, rather than distortion to the widget's shape. •
+[1−9] or −[1−9] tweaks the scaling a little bigger or smaller. •
[1−9] − rotates by a multiple of 45 degrees. '6' does nothing, the others point in the direction of that
key on a numeric keypad.

•

Callbacks

Callbacks are functions that are called when the value of a widget changes. A callback function is sent a
Fl_Widget pointer of the widget that changed and optionally a pointer to data of some sort:

void xyz_callback(Fl_Widget *w, void *data) {
...
}

The callback() method sets the callback function for a widget. You can optionally pass a pointer to some
data needed for the callback:

int xyz_data;

button−>callback(xyz_callback, data);

Normally callbacks are performed only when the value of the widget changes. You can change this using the
when() method:

button−>when(FL_WHEN_NEVER);
button−>when(FL_WHEN_CHANGED);
button−>when(FL_WHEN_RELEASE);
button−>when(FL_WHEN_RELEASE_ALWAYS);
button−>when(FL_WHEN_ENTER_KEY);
button−>when(FL_WHEN_ENTER_KEY_ALWAYS);
button−>when(FL_WHEN_CHANGED | FL_WHEN_NOT_CHANGED);

FLTK 1.0.11 Programming Manual

20 Callbacks

Shortcuts

Shortcuts are key sequences that activate widgets (usually buttons or menu items). The
shortcut() method sets the shortcut for a widget:

button−>shortcut(FL_Enter);
button−>shortcut(FL_SHIFT + 'b');
button−>shortcut(FL_CTRL + 'b');
button−>shortcut(FL_ALT + 'b');
button−>shortcut(FL_CTRL + FL_ALT + 'b');
button−>shortcut(0); // no shortcut

The shortcut value is the key event value (the ASCII value or one of the special keys like FL_Enter)
combined with any modifiers (like shift, alt, and control).

FLTK 1.0.11 Programming Manual

Shortcuts 21

FLTK 1.0.11 Programming Manual

22 Shortcuts

4 − Designing a Simple Text Editor

This chapter takes you through the design of a simple FLTK−based text editor.

Determining the Goals of the Text Editor

Since this will be the first big project you'll be doing with FLTK, lets define what we want our text editor to
do:

Menubar/menus for all functions. 1.
Edit a single text file. 2.
Load from a file. 3.
Save to a file. 4.
Cut/copy/delete/paste functions. 5.
Search and replace functions. 6.
Keep track of when the file has been changed. 7.

Designing the Main Window

Now that we've outlined the goals for our editor, we can begin with the design of our GUI. Obviously the first
thing that we need is a window:

Fl_Window *window;

window = new Fl_Window(640, 480, "Text Editor");

4 − Designing a Simple Text Editor 23

Variables

Our text editor will need some global variables to keep track of things:

Fl_Window *window;
Fl_Menu_Bar *menubar;
Fl_Multiline_Input *input;
Fl_Window *replace_dlg;
Fl_Input *replace_find;
Fl_Input *replace_with;
Fl_Button *replace_all;
Fl_Return_Button *replace_next;
Fl_Button *replace_cancel;

int changed = 0;
char filename[1024] = "";
char search[256] = "";

The window variable is our top−level window described previously. We'll cover the other variables as we
build the application.

Menubars and Menus

The first goal requires us to use a menubar and menus that define each function the editor needs to perform.
The Fl_Menu_Item structure is used to define the menus and items in a menubar:

Fl_Menu_Item menuitems[] = {
 { "&File", 0, 0, 0, FL_SUBMENU },
 { "&New", FL_ALT + 'n', (Fl_Callback *)new_cb },
 { "&Open...", FL_ALT + 'o', (Fl_Callback *)open_cb, 0, FL_MENU_DIVIDER },
 { "&Save", FL_ALT + 's', (Fl_Callback *)save_cb },
 { "Save &As...", FL_ALT + FL_SHIFT + 's', (Fl_Callback *)saveas_cb, 0, FL_MENU_DIVIDER },
 { "&Quit", FL_ALT + 'q', (Fl_Callback *)quit_cb },
 { 0 },

 { "&Edit", 0, 0, 0, FL_SUBMENU },
 { "&Undo", FL_ALT + 'z', (Fl_Callback *)undo_cb, 0, FL_MENU_DIVIDER },
 { "Cu&t", FL_ALT + 'x', (Fl_Callback *)cut_cb },
 { "&Copy", FL_ALT + 'c', (Fl_Callback *)copy_cb },
 { "&Paste", FL_ALT + 'v', (Fl_Callback *)paste_cb },
 { "&Delete", 0, (Fl_Callback *)delete_cb },
 { 0 },

 { "&Search", 0, 0, 0, FL_SUBMENU },
 { "&Find...", FL_ALT + 'f', (Fl_Callback *)find_cb },
 { "F&ind Again", FL_ALT + 'g', (Fl_Callback *)find2_cb },
 { "&Replace...", FL_ALT + 'r', (Fl_Callback *)replace_cb },
 { "Re&place Again", FL_ALT + 't', (Fl_Callback *)replace2_cb },
 { 0 },

 { 0 }
};

Once we have the menus defined we can create the Fl_Menu_Bar widget and assign the menus to it with:

Fl_Menu_Bar *menubar = new Fl_Menu_Bar(0, 0, 640, 30);
menubar−>menu(menuitems);

FLTK 1.0.11 Programming Manual

24 Variables

We'll define the callback functions later.

Editing the Text

To keep things simple our text editor will use the Fl_Multiline_Input widget to edit the text:

Fl_Multiline_Input *input = new Fl_Multiline_Input(0, 30, 640, 450);

So that we can keep track of changes to the file, we also want to add a "changed" callback:

input−>callback(changed_cb);
input−>when(FL_WHEN_CHANGED);

Finally, we want to use a mono−spaced font like FL_COURIER:

input−>textfont(FL_COURIER);

The Replace Dialog

We can use the FLTK convenience functions for many of the editor's dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a "find" string, a "replace" string, and
"replace all", "replace next", and "cancel" buttons. The strings are just Fl_Input widgets, the "replace all"
and "cancel" buttons are Fl_Button widgets, and the "replace next " button is a
Fl_Return_Button widget:

Fl_Window *replace_dlg = new Fl_Window(300, 105, "Replace");
Fl_Input *replace_find = new Fl_Input(70, 10, 200, 25, "Find:");
Fl_Input *replace_with = new Fl_Input(70, 40, 200, 25, "Replace:");
Fl_Button *replace_all = new Fl_Button(10, 70, 90, 25, "Replace All");
Fl_Button *replace_next = new Fl_Button(105, 70, 120, 25, "Replace Next");
Fl_Button *replace_cancel = new Fl_Button(230, 70, 60, 25, "Cancel");

Callbacks

Now that we've defined the GUI components of our editor, we need to define our callback functions.

changed_cb()

This function will be called whenever the user changes any text in the input widget:

void changed_cb(void) {
 set_changed(1);

FLTK 1.0.11 Programming Manual

Editing the Text 25

}

The set_changed() function is one that we will write to set the changed status on the current file. We're
doing it this way because some of the other callbacks will set the changed status to 0, and also because we
want to show the changed status in the window's title bar.

copy_cb()

This callback function will call input−>copy() to copy the currently selected text to the clipboard:

void copy_cb(void) {
 input−>copy();
}

cut_cb()

This callback function will call input−>copy() to copy the currently selected text to the clipboard and
then input−>cut() to delete it:

void cut_cb(void) {
 input−>copy();
 input−>cut();
}

delete_cb()

This callback function will call input−>cut() to delete the selected text:

void delete_cb(void) {
 input−>cut();
}

find_cb()

This callback function asks for a search string using the fl_input() convenience function and then calls
the find2_cb() function to find the string:

void find_cb(void) {
 const char *val;

 val = fl_input("Search String:", search);
 if (val != NULL) {
 // User entered a string − go find it!
 strcpy(search, val);
 find2_cb();
 }
}

find2_cb()

This function will find the next occurrence of the search string. If the search string is blank then we want to
pop up the search dialog:

FLTK 1.0.11 Programming Manual

26 Callbacks

void find2_cb(void) {
 const char *val, *found;
 int pos;

 if (search[0] == '\0') {
 // Search string is blank; get a new one...
 find_cb();
 return;
 }

 val = input−>value() + input−>mark();
 found = strstr(val, search);

 if (found != NULL) {
 // Found a match; update the position and mark...
 pos = input−>mark() + found − val;
 input−>position(pos, pos + strlen(search));
 }
 else fl_alert("No occurrences of \'%s\' found!", search);
}

If the search string cannot be found we use the fl_alert() convenience function to display a message to
that effect.

new_cb()

This callback function will clear the input widget and current filename. It also calls the
check_save() function to give the user the opportunity to save the current file first as needed:

void new_cb(void) {
 if (changed)
 if (!check_save()) return;

 filename[0] = '\0';
 input−>value("");
 set_changed(0);
}

open_cb()

This callback function will ask the user for a filename and then load the specified file into the input widget
and current filename. It also calls the check_save() function to give the user the opportunity to save the
current file first as needed:

void open_cb(void) {
 char *newfile;

 if (changed)
 if (!check_save()) return;

 newfile = fl_file_chooser("Open File?", "*", filename);
 if (newfile != NULL) load_file(newfile);
}

We call the load_file() function to actually load the file.

FLTK 1.0.11 Programming Manual

Callbacks 27

paste_cb()

This callback function will send a FL_PASTE message to the input widget using the
Fl::paste() method:

void paste_cb(void) {
 Fl::paste(*input);
}

quit_cb()

The quit callback will first see if the current file has been modified, and if so give the user a chance to save it.
It then hides the main window:

void quit_cb(void) {
 if (changed)
 if (!check_save())
 return;

 window−>hide();
}

replace_cb()

The replace callback just shows the replace dialog:

void replace_cb(void) {
 replace_dlg−>show();
}

replace2_cb()

This callback will replace the next occurence of the replacement string. If nothing has been entered for the
replacement string, then the replace dialog is displayed instead:

void replace2_cb() {
 const char *find, *val, *found;
 int pos;

 find = replace_find−>value();
 if (find[0] == '\0') {
 // Search string is blank; get a new one...
 replace_dlg−>show();
 return;
 }

 val = input−>value() + input−>position();
 found = strstr(val, find);

 if (found != NULL) {
 // Found a match; update the position and replace text...
 pos = input−>position() + found − val;
 input−>replace(pos, pos + strlen(find), replace_with−>value());
 input−>position(pos + strlen(replace_with−>value()));
 }
 else fl_alert("No occurrences of \'%s\' found!", find);

FLTK 1.0.11 Programming Manual

28 Callbacks

}

replall_cb()

This callback will replace all occurences of the search string in the file:

void replall_cb() {
 const char *find, *val, *found;
 int pos;
 int times;

 find = replace_find−>value();
 if (find[0] == '\0') {
 // Search string is blank; get a new one...
 replace_dlg−>show();
 return;
 }

 input−>position(0);
 times = 0;

 // Loop through the whole string
 do {
 val = input−>value() + input−>position();
 found = strstr(val, find);

 if (found != NULL) {
 // Found a match; update the position and replace text...
 times ++;
 pos = input−>position() + found − val;
 input−>replace(pos, pos + strlen(find), replace_with−>value());
 input−>position(pos + strlen(replace_with−>value()));
 }
 } while (found != NULL);

 if (times > 0) fl_message("Replaced %d occurrences.", times);
 else fl_alert("No occurrences of \'%s\' found!", find);
}

replcan_cb()

This callback just hides the replace dialog:

void replcan_cb() {
 replace_dlg−>hide();
}

save_cb()

This callback saves the current file. If the current filename is blank it calls the "save as" callback:

void save_cb(void) {
 if (filename[0] == '\0') {
 // No filename − get one!
 saveas_cb();
 return;
 }
 else save_file(filename);

FLTK 1.0.11 Programming Manual

Callbacks 29

}

The save_file() function saves the current file to the specified filename.

saveas_cb()

This callback asks the user for a filename and saves the current file:

void saveas_cb(void) {
 char *newfile;

 newfile = fl_file_chooser("Save File As?", "*", filename);
 if (newfile != NULL) save_file(newfile);
}

The save_file() function saves the current file to the specified filename.

undo_cb()

The undo callback just calls the undo() method:

void undo_cb(void) {
 input−>undo();
}

Other Functions

Now that we've defined the callback functions, we need our support functions to make it all work:

check_save()

This function checks to see if the current file needs to be saved. If so, it asks the user if they want to save it:

int check_save(void) {
 if (!changed) return 1;

 if (fl_ask("The current file has not been saved.\n"
 "Would you like to save it now?")) {
 // Save the file...
 save_cb();

 return !changed;
 }
 else return (1);
}

load_file()

This function loads the specified file into the input widget:

void load_file(char *newfile) {
 FILE *fp;
 char buffer[8192];
 int nbytes;

FLTK 1.0.11 Programming Manual

30 Callbacks

 int pos;

 input−>value("");

 fp = fopen(newfile, "r");
 if (fp != NULL) {
 // Was able to open file; let's read from it...
 strcpy(filename, newfile);
 pos = 0;

 while ((nbytes = fread(buffer, 1, sizeof(buffer), fp)) > 0) {
 input−>replace(pos, pos, buffer, nbytes);
 pos += nbytes;
 }

 fclose(fp);
 input−>position(0);
 set_changed(0);
 } else {
 // Couldn't open file − say so...
 fl_alert("Unable to open \'%s\' for reading!");
 }
}

When loading the file we use the input−>replace() method to "replace" the text at the end of the buffer.
The pos variable keeps track of the end of the buffer.

save_file()

This function saves the current buffer to the specified file:

void save_file(char *newfile) {
 FILE *fp;

 fp = fopen(newfile, "w");
 if (fp != NULL) {
 // Was able to create file; let's write to it...
 strcpy(filename, newfile);

 if (fwrite(input−>value(), 1, input−>size(), fp) < 1) {
 fl_alert("Unable to write file!");
 fclose(fp);
 return;
 }

 fclose(fp);
 set_changed(0);
 } else {
 // Couldn't open file − say so...
 fl_alert("Unable to create \'%s\' for writing!");
 }
}

set_changed()

This function sets the changed variable and updates the window label accordingly:

void set_changed(int c) {
 if (c != changed) {

FLTK 1.0.11 Programming Manual

Other Functions 31

 char title[1024];
 char *slash;

 changed = c;

 if (filename[0] == '\0') strcpy(title, "Untitled");
 else {
 slash = strrchr(filename, '/');
 if (slash == NULL) slash = strrchr(filename, '\\');

 if (slash != NULL) strcpy(title, slash + 1);
 else strcpy(title, filename);
 }

 if (changed) strcat(title, " (modified)");

 window−>label(title);
 }
}

Compiling the Editor

The complete source for our text editor can be found in the test/editor.cxx source file. Both the
Makefile and Visual C++ workspace include the necessary rules to build the editor. You can also compile it
using a standard compiler with:

CC −o editor editor.cxx −lfltk −lXext −lX11 −lm

As noted in Chapter 1, you may need to include compiler and linker options to tell them where to find the
FLTK library. Also, the CC command may also be called gcc or c++ on your system.

Congratulations, you've just built your own text editor!

The Final Product

The final editor window should look like the image on the next page.

FLTK 1.0.11 Programming Manual

32 Compiling the Editor

FLTK 1.0.11 Programming Manual

Compiling the Editor 33

FLTK 1.0.11 Programming Manual

34 Compiling the Editor

5 − Drawing Things in FLTK
This chapter covers the drawing functions that are provided with FLTK.

When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other places
will result in undefined behavior!

The most common is inside the virtual method Fl_Widget::draw(). To write code here, you
must subclass one of the existing Fl_Widget classes and implement your own version of draw().

•

You can also write boxtypes and labeltypes. These are small procedures that can be called by existing
Fl_Widget::draw() methods. These "types" are identified by an 8−bit index that is stored in the
widget's box() , labeltype(), and possibly other properties.

•

You can call Fl_Window::make_current() to do incremental update of a widget. Use
Fl_Widget::window() to find the window.

•

FLTK Drawing Functions

To use the drawing functions you must first include the <FL/fl_draw.H> header file. FLTK provides the
following types of drawing functions:

Clipping•
Colors•
Line dashes and thickness•
Fast Shapes•
Complex Shapes•
Text•
Images•
Overlay•

Clipping

You can limit all your drawing to a rectangular region by calling fl_clip, and put the drawings back by
using fl_pop_clip. This rectangle is measured in pixels (it is unaffected by the current transformation
matrix).

In addition, the system may provide clipping when updating windows, this clip region may be more complex
than a simple rectangle.

void fl_push_clip(int x, int y, int w, int h)

Intersect the current clip region with a rectangle and push this new region onto the stack.

void fl_push_no_clip()

Pushes an empty clip region on the stack so nothing will be clipped.

5 − Drawing Things in FLTK 35

void fl_pop_clip()

Restore the previous clip region. You must call fl_pop_clip() once for every time you call
fl_clip(). If you return to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int x, int y, int w, int h)

Returns true if any of the rectangle intersects the current clip region. If this returns false you don't have to
draw the object. Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the
clip region.

int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersect the rectangle x,y,w,h with the current clip region and returns the bounding box of the result in
X,Y,W,H. Returns non−zero if the resulting rectangle is different than the original. This can be used to limit
the necessary drawing to a rectangle. W and H are set to zero if the rectangle is completely outside the region.

Colors

void fl_color(Fl_Color)

Set the color for all subsequent drawing operations. Fl_Color is an enumeration type, and all values are in
the range 0−255. This is not the X or WIN32 pixel, it is an index into an internal table! The table provides
several general colors, a 24−entry gray ramp, and a 5x8x5 color cube. All of these are named with symbols in
<FL/Enumerations.H>.

For colormapped displays, a color cell will be allocated out of fl_colormap the first time you use a color.
If the colormap fills up then a least−squares algorithm is used to find the closest color.

Fl_Color fl_color()

Returns the last fl_color() that was set. This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is used. The
RGB color is used directly on TrueColor displays. For colormap visuals the nearest index in the gray ramp or
color cube is used.

Line dashes and thickness

void fl_line_style(int style, int width=0, char* dashes=0)

Set how to draw lines (the "pen"). If you change this it is your responsibility to set it back to the default with
fl_line_style(0).

Note: Because of how line styles are implemented on WIN32 systems, you must set the line
style after setting the drawing color. If you set the color after the line style you will lose the
line style settings!

FLTK 1.0.11 Programming Manual

36 FLTK Drawing Functions

style is a bitmask in which you 'or' the following values. If you don't specify a dash type you will get a solid
line. If you don't specify a cap or join type you will get a system−defined default of whatever value is fastest.

FL_SOLID −−−−−−−•
FL_DASH − − − −•
FL_DOT •
FL_DASHDOT − . − .•
FL_DASHDOTDOT − .. −•
FL_CAP_FLAT•
FL_CAP_ROUND•
FL_CAP_SQUARE (extends past end point 1/2 line width) •
FL_JOIN_MITER (pointed) •
FL_JOIN_ROUND•
FL_JOIN_BEVEL (flat) •

width is the number of pixels thick to draw the lines. Zero results in the system−defined default, which on
both X and Windows is somewhat different and nicer than 1.

dashes is a pointer to an array of dash lengths, measured in pixels. The first location is how long to draw a
solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated with a zero−length
entry. A null pointer or a zero−length array results in a solid line. Odd array sizes are not supported and result
in undefined behavior. The dashes array does not work on Windows 95/98, use the dash styles instead.

Fast Shapes

These are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and are as fast as
possible, and their behavior will be duplicated exactly on any platform FLTK is ported to. It is undefined
whether these are affected by the transformation matrix, so you should only call these while it is the identity.

void fl_point(int x, int y)

Draw a single pixel at the given coordinates.

void fl_rectf(int x, int y, int w, int h)

Color a rectangle that exactly fills the given bounding box.

void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r,g,b color. On screens with less than 24 bits of color this is
done by drawing a solid−colored block using fl_draw_image() so that dithering is produced.

void fl_rect(int x, int y, int w, int h)

Draw a 1−pixel border inside this bounding box.

void fl_line(int x, int y, int x1, int y1)
void fl_line(int x, int y, int x1, int y1, int x2, int y2)

Draw one or two 1−pixel thick lines between the given points.

FLTK 1.0.11 Programming Manual

FLTK Drawing Functions 37

void fl_loop(int x, int y, int x1, int y1, int x2, int y2)
void fl_loop(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Outline a 3 or 4−sided polygon with 1−pixel thick lines.

void fl_polygon(int x, int y, int x1, int y1, int x2, int y2)
void fl_polygon(int x, int y, int x1, int y1, int x2, int y2, int x3, int y3)

Fill a 3 or 4−sided polygon. The polygon must be convex.

void fl_xyline(int x, int y, int x1, int y1)
void fl_xyline(int x, int y, int x1, int y1, int x2)
void fl_xyline(int x, int y, int x1, int y1, int x2, int y3)

Draw 1−pixel wide horizontal and vertical lines. A horizontal line is drawn first, then a vertical, then a
horizontal.

void fl_yxline(int x, int y, int y1)
void fl_yxline(int x, int y, int y1, int x2)
void fl_yxline(int x, int y, int y1, int x2, int y3)

Draw 1−pixel wide vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a
vertical.

void fl_arc(int x, int y, int w, int h, double a1, double a2)
void fl_pie(int x, int y, int w, int h, double a1, double a2)

High−speed ellipse sections. These functions match the rather limited circle drawing code provided by X and
WIN32. The advantage over using fl_arc is that they are faster because they often use the hardware, and
they draw much nicer small circles, since the small sizes are often hard−coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3'oclock and are the starting and ending angle of the arc, a2 must be greater
or equal to a1.

fl_arc() draws a 1−pixel thick line (notice this has a different number of arguments than the
fl_arc() described below.

fl_pie() draws a filled−in pie slice. This slice may extend outside the line drawn by fl_arc, to avoid
this use w − 1 and h − 1.

Complex Shapes

These functions let you draw arbitrary shapes with 2−D linear transformations. The functionality matches
that found in Adobe® PostScriptTM. The exact pixels that are filled is less defined than for the previous calls
so that FLTK can take advantage of drawing hardware. On both X and WIN32 the transformed vertices are
rounded to integers before drawing the line segments: this severely limits the accuracy of these functions for
complex graphics, so use OpenGL when greater accuracy and/or performance is required.

FLTK 1.0.11 Programming Manual

38 FLTK Drawing Functions

void fl_push_matrix()
void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 4.

void fl_scale(float x, float y)
void fl_scale(float x)
void fl_translate(float x, float y)
void fl_rotate(float d)
void fl_mult_matrix(float a, float b, float c, float d, float x, float y)

Concatenate another transformation onto the current one. The rotation angle is in degrees (not radians) and is
counter−clockwise.

void fl_begin_line()
void fl_end_line()

Start and end drawing 1−pixel thick lines.

void fl_begin_loop()
void fl_end_loop()

Start and end drawing a closed sequence of 1−pixel thick lines.

void fl_begin_polygon()
void fl_end_polygon()

Start and end drawing a convex filled polygon.

void fl_begin_complex_polygon()
void fl_gap()
void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holes in it, or may
be several disconnected pieces. Call fl_gap() to seperate loops of the path (it is unnecessary but harmless
to call fl_gap() before the first vertex, after the last one, or several times in a row). For portability, you
should only draw polygons that appear the same whether "even/odd" or "non−zero" winding rules are used to
fill them. This mostly means that holes should be drawn in the opposite direction of the outside.

fl_gap() should only be called between fl_begin_complex_polygon() and
fl_end_complex_polygon(). To outline the polygon, use fl_begin_loop() and replace each
fl_gap() with fl_end_loop();fl_begin_loop().

void fl_vertex(float x, float y)

Add a single vertex to the current path.

void fl_curve(float x, float y, float x1, float y1, float x2, float y2, float x3, float y3)

Add a series of points on a Bezier curve to the path. The curve ends (and two of the points) are at x,y and
x3,y3.

FLTK 1.0.11 Programming Manual

FLTK Drawing Functions 39

void fl_arc(float x, float y, float r, float start, float end)

Add a series of points to the current path on the arc of a circle (you can get elliptical paths by using scale and
rotate before calling this). x,y are the center of the circle, and r is its radius. fl_arc() takes start and
end angles that are measured in degrees counter−clockwise from 3 o'clock. If end is less than start then it
draws the arc in a clockwise direction.

void fl_circle(float x, float y, float r)

fl_circle() is equivalent to fl_arc(...,0,360) but may be faster. It must be the only thing in the
path: if you want a circle as part of a complex polygon you must use fl_arc() . This draws incorrectly if
the transformation is both rotated and non−square scaled.

Text

All text is drawn in the current font. It is undefined whether this location or the characters are modified by the
current transformation.

void fl_draw(const char *, float x, float y)
void fl_draw(const char *, int n, float x, float y)

Draw a nul−terminated string or an array of n characters starting at the given location.

void fl_draw(const char *, int x, int y, int w, int h, Fl_Align)

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned inside
the passed box. Handles '\t' and '\n', expands all other control characters to ^X, and aligns inside or against the
edges of the box. See Fl_Widget::align() for values for align. The value FL_ALIGN_INSIDE is
ignored, as this function always prints inside the box.

void fl_measure(const char *, int &w, int &h)

Measure how wide and tall the string will be when printed by the fl_draw(...align) function. If the
incoming w is non−zero it will wrap to that width.

int fl_height()

Recommended minimum line spacing for the current font. You can also just use the value of size passed to
fl_font().

int fl_descent()

Recommended distance above the bottom of a fl_height() tall box to draw the text at so it looks
centered vertically in that box.

float fl_width(const char*)
float fl_width(const char*, int n)
float fl_width(uchar)

Return the pixel width of a nul−terminated string, a sequence of n characters, or a single character in the

FLTK 1.0.11 Programming Manual

40 FLTK Drawing Functions

current font.

const char *fl_shortcut_label(ulong)

Unparse a shortcut value as used by Fl_Button or Fl_Menu_Item into a human−readable string like
"Alt+N". This only works if the shortcut is a character key or a numbered function key. If the shortcut is zero
an empty string is returned. The return value points at a static buffer that is overwritten with each call.

Fonts

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. You may call this outside a draw
context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels (not "points").
Lines should be spaced size pixels apart (or more).

The face is an index into an internal table. Initially only the first 16 faces are filled in. There are symbolic
names for them: FL_HELVETICA, FL_TIMES, FL_COURIER, and modifier values FL_BOLD and
FL_ITALIC which can be added to these, and FL_SYMBOL and FL_ZAPF_DINGBATS . Faces greater
than 255 cannot be used in Fl_Widget labels, since it stores the index as a byte.

int fl_font()
int fl_size()

Returns the face and size set by the most recent call to fl_font(a,b). This can be used to save/restore the
font.

Overlays

void fl_overlay_rect(int x, int y, int w, int h)
void fl_overlay_clear()

These functions allow you to draw interactive selection rectangles without using the overlay hardware. FLTK
will XOR a single rectangle outline over a window. Calling this will erase any previous rectangle (by
XOR'ing it), and then draw the new one. Calling fl_overlay_clear() will erase the rectangle without
drawing a new one.

Using this is tricky. You should make a widget with both a handle() and draw() method.
draw() should call fl_overlay_clear() before doing anything else. Your handle() method should
call window()−>make_current() and then fl_overlay_rect() after FL_DRAG events, and
should call fl_overlay_clear() after a FL_RELEASE event.

Images

To draw images, you can either do it directly from data in your memory, or you can create Fl_Bitmap,
Fl_Image, or Fl_Pixmap objects. The advantage of drawing directly is that it is more intuitive, and it is
faster if the image data changes more often than it is redrawn. The advantage of using the object is that FLTK
will cache translated forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

FLTK 1.0.11 Programming Manual

FLTK Drawing Functions 41

Direct Image Drawing

It is undefined whether the location or drawing of the image is affected by the current transformation, so you
should only call these when it is the identity.

void fl_draw_image(const uchar *, int X, int Y, int W, int H, int D = 3, int LD = 0)
void fl_draw_image_mono(const uchar *, int X, int Y, int W, int H, int D = 1, int LD = 0)

Draw an 8−bit per color RGB or luminance image. The pointer points at the "r" data of the top−left pixel.
Data must be in r,g,b order. X,Y are where to put the top−left corner. W and H define the size of the image.
D is the delta to add to the pointer between pixels, it may be any value greater or equal to 3, or it can be
negative to flip the image horizontally. LD is the delta to add to the pointer between lines (if 0 is passed it
uses W * D), and may be larger than W * D to crop data, or negative to flip the image vertically.

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl::visual(FL_RGB);

Gray scale (1−channel) images may be drawn. This is done if abs(D) is less than 3, or by calling
fl_draw_image_mono(). Only one 8−bit sample is used for each pixel, and on screens with different
numbers of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let you display
one channel of a color image.

The X version does not support all possible visuals. If FLTK cannot draw the image in the current visual it
will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up to 32 bits.

typedef void (*fl_draw_image_cb)(void *, int x, int y, int w, uchar *)
void fl_draw_image(fl_draw_image_cb, void *, int X, int Y, int W, int H, int D = 3)
void fl_draw_image_mono(fl_draw_image_cb, void *, int X, int Y, int W, int H, int D = 1)

Call the passed function to provide each scan line of the image. This lets you generate the image as it is being
drawn, or do arbitrary decompression of stored data (provided it can be decompressed to individual scan lines
easily).

The callback is called with the void * user data pointer (this can be used to point at a structure of
information about the image), and the x, y, and w of the scan line desired from the image. 0,0 is the
upper−left corner (not X,Y). A pointer to a buffer to put the data into is passed. You must copy w pixels
from scanline y, starting at pixel x , to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first y may
be greater than zero, and w may be less than W. The buffer is long enough to store the entire W * D pixels,
this is for convienence with some decompression schemes where you must decompress the entire line at
once: decompress it into the buffer, and then if x is not zero, copy the data over so the x'th pixel is at the start
of the buffer.

You can assume the y's will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

FLTK 1.0.11 Programming Manual

42 Images

int fl_draw_pixmap(char **data, int X, int Y, Fl_Color = FL_GRAY)

Draws XPM image data, with the top−left corner at the given position. The image is dithered on 8−bit
displays so you won't lose color space for programs displaying both images and pixmaps. This function
returns zero if there was any error decoding the XPM data.

To use an XPM, do:

#include "foo.xpm"
...
fl_draw_pixmap(foo, X, Y);

In the current version the XPM data is converted to 24−bit RGB color and passed through
fl_draw_image(). This is obviously not the most efficient way to do it, and has the same visual
limitations as listed above for fl_draw_image(). Transparent colors are replaced by the optional
Fl_Color argument (this may change in the future).

int fl_measure_pixmap(char **data, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and height. The
return value is non−zero if it parsed the dimensions ok, and zero if there is any problem.

class Fl_Bitmap

This object encapsulates the width, height, and bits of an X bitmap (XBM), and allows you to make an
Fl_Widget use a bitmap as a label, or to just draw the bitmap directly. Under X it will create an offscreen
pixmap the first time it is drawn, and copy this each subsequent time it is drawn.

Fl_Bitmap(const char *bits, int W, int H)
Fl_Bitmap(const uchar *bits, int W, int H)

Construct using an X bitmap. The bits pointer is simply copied to the object, so it must point at persistent
storage. The two constructors are provided because various X implementations disagree about the type of
bitmap data. To use an XBM file use:

#include "foo.xbm"
...
Fl_Bitmap bitmap = new Fl_Bitmap(foo_bits, foo_width, foo_height);

~Fl_Bitmap()

The destructor will destroy any X pixmap created. It does not do anything to the bits data.

void draw(int x, int y, int w, int h, int ox = 0, int oy = 0)

x,y,w,h indicates a destination rectangle. ox,oy,w,h is a source rectangle. This source rectangle from the
bitmap is drawn in the destination. 1 bits are drawn with the current color, 0 bits are unchanged. The source
rectangle may extend outside the bitmap (i.e. ox and oy may be negative and w and h may be bigger than the
bitmap) and this area is left unchanged.

FLTK 1.0.11 Programming Manual

Images 43

void draw(int x, int y)

Draws the bitmap with the upper−left corner at x,y. This is the same as doing
draw(x,y,this−>w,this−>h,0,0).

void label(Fl_Widget *)

Change the label() and the labeltype() of the widget to draw the bitmap. 1 bits will be drawn with
the labelcolor() , zero bits will be unchanged. You can use the same bitmap for many widgets.

class Fl_Pixmap

This object encapsulates the data from an XPM image, and allows you to make an Fl_Widget use a
pixmap as a label, or to just draw the pixmap directly. Under X it will create an offscreen pixmap the first
time it is drawn, and copy this each subsequent time it is drawn .

The current implementation converts the pixmap to 24−bit RGB data and uses fl_draw_image() to draw
it. Thus you will get dithered colors on an 8 bit screen.

Fl_Pixmap(char *const* data)

Construct using XPM data. The data pointer is simply copied to the object, so it must point at persistent
storage. To use an XPM file do:

#include <FL/Fl_Pixmap.H>
#include "foo.xpm"
...
Fl_Pixmap pixmap = new Fl_Pixmap(foo);

~Fl_Pixmap()

The destructor will destroy any X pixmap created. It does not do anything to the data.

void draw(int x, int y, int w, int h, int ox = 0, int oy = 0)

x,y,w,h indicates a destination rectangle. ox,oy,w,h is a source rectangle. This source rectangle is
copied to the destination. The source rectangle may extend outside the pixmap (i.e. ox and oy may be
negative and w and h may be bigger than the pixmap) and this area is left unchanged.

void draw(int x, int y)

Draws the image with the upper−left corner at x,y. This is the same as doing
draw(x,y,this−>w,this−>h,0,0).

void label(Fl_Widget *)

Change the label() and the labeltype() of the widget to draw the pixmap. You can use the same
pixmap for many widgets.

FLTK 1.0.11 Programming Manual

44 Images

class Fl_Image

This object encapsulates a full−color RGB image, and allows you to make an Fl_Widget use an image as a
label, or to just draw the image directly. Under X it will create an offscreen pixmap the first time it is drawn,
and copy this each subsequent time it is drawn.

Fl_Image(const uchar *data, int W, int H, int D = 3, int LD = 0)

Construct using a pointer to RGB data. W and H are the size of the image in pixels. D is the delta between
pixels (it may be more than 3 to skip alpha or other data, or negative to flip the image left/right). LD is the
delta between lines (it may be more than D * W to crop images, or negative to flip the image vertically). The
data pointer is simply copied to the object, so it must point at persistent storage.

~Fl_Image()

The destructor will destroy any X pixmap created. It does not do anything to the data.

void draw(int x, int y, int w, int h, int ox = 0, int oy = 0)

x,y,w,h indicates a destination rectangle. ox,oy,w,h is a source rectangle. This source rectangle is
copied to the destination. The source rectangle may extend outside the image (i.e. ox and oy may be negative
and w and h may be bigger than the image) and this area is left unchanged.

void draw(int x, int y)

Draws the image with the upper−left corner at x,y. This is the same as doing
draw(x,y,this−>w,this−>h,0,0).

void label(Fl_Widget *)

Change the label() and the labeltype() of the widget to draw the image. You can use the same image
for many widgets.

FLTK 1.0.11 Programming Manual

class Fl_Pixmap 45

FLTK 1.0.11 Programming Manual

46 class Fl_Pixmap

6 − Handling Events

This chapter discusses the FLTK event model and how to handle events in your program or widget.

The FLTK Event Model

Every time a user moves the mouse pointer, clicks a button, or presses a key, an event is generated and sent to
your application. Events can also come from other programs like the window manager.

Events are identified by the integer argument passed to the Fl_Widget::handle() virtual method. Other
information about the most recent event is stored in static locations and acquired by calling the
Fl::event_*() methods. This static information remains valid until the next event is read from window
system (i.e. it is ok to look at it outside of the handle() method).

Mouse Events

FL_PUSH

A mouse button has gone down with the mouse pointing at this widget. You can find out what button by
calling Fl::event_button(). You find out the mouse position by calling Fl::event_x() and
Fl::event_y().

A widget indicates that it "wants" the mouse click by returning non−zero from its handle() method. It will
then become the Fl::pushed() widget and will get FL_DRAG and the matching FL_RELEASE events. If
handle() returns zero then FLTK will try sending the FL_PUSH to another widget.

6 − Handling Events 47

FL_DRAG

The mouse has moved with a button held down. The current button state is in Fl::event_state(). The
mouse position is in Fl::event_x() and Fl::event_y().

To receive FL_DRAG events you must also respond to the FL_PUSH and FL_RELEASE events.

FL_RELEASE

A mouse button has been released. You can find out what button by calling Fl::event_button().

FL_MOVE

The mouse has moved without any mouse buttons held down. This event is sent to the
Fl::belowmouse() widget.

Focus Events

FL_ENTER

The mouse has been moved to point at this widget. This can be used for highlighting feedback. If a widget
wants to highlight or otherwise track the mouse, it indicates this by returning non−zero from its handle()
method. It then becomes the Fl::belowmouse() widget and will receive FL_MOVE and
FL_LEAVE events.

FL_LEAVE

The mouse has moved out of the widget.

FL_FOCUS

This indicates an attempt to give a widget the keyboard focus.

If a widget wants the focus, it should change itself to display the fact that it has the focus, and return
non−zero from its handle() method. It then becomes the Fl::focus() widget and gets
FL_KEYBOARD and FL_UNFOCUS events.

The focus will change either because the window manager changed which window gets the focus, or because
the user tried to navigate using tab, arrows, or other keys. You can check Fl::event_key() to figure out
why it moved. For navigation it will be the key pressed and for instructions from the window manager it will
be zero.

FL_UNFOCUS

Sent to the previous Fl::focus() widget when another widget gets the focus.

FLTK 1.0.11 Programming Manual

48 Mouse Events

Keyboard Events

FL_KEYBOARD

A key press. The key pressed can be found in Fl::event_key(). The text that the key should insert can
be found with Fl::event_text() and its length is in Fl::event_length(). If you use the key
handle() should return 1. If you return zero then FLTK assummes you ignored the key. It will then
attempt to send it to a parent widget. If none of them want it, it will change the event into a
FL_SHORTCUT event.

To receive FL_KEYBOARD events you must also respond to the FL_FOCUS and FL_UNFOCUS events.

If you are writing a text−editing widget you may also want to call the Fl::compose() function to translate
individual keystrokes into foreign characters.

FL_SHORTCUT

If the Fl::focus() widget is zero or ignores an FL_KEYBOARD event then FLTK tries sending this event
to every widget it can, until one of them returns non−zero. FL_SHORTCUT is first sent to the
belowmouse() widget, then its parents and siblings, and eventually to every widget in the window, trying
to find an object that returns non−zero. FLTK tries really hard to not to ignore any keystrokes!

You can also make "global" shortcuts by using Fl::add_handler(). A global shortcut will work no
matter what windows are displayed or which one has the focus.

Widget Events

FL_DEACTIVATE

This widget is no longer active, due to deactivate() being called on it or one of its parents. active()
may still be true after this, the widget is only active if active() is true on it and all its parents (use
active_r() to check this).

FL_ACTIVATE

This widget is now active, due to activate() being called on it or one of its parents.

FL_HIDE

This widget is no longer visible, due to hide() being called on it or one of its parents, or due to a parent
window being minimized. visible() may still be true after this, but the widget is visible only if
visible() is true for it and all its parents (use visible_r() to check this).

FL_SHOW

This widget is visible again, due to show() being called on it or one of its parents, or due to a parent window
being restored. Child Fl_Windows respond to this by actually creating the window if not done already, so if
you subclass a window, be sure to pass FL_SHOW to the base class handle() method!

FLTK 1.0.11 Programming Manual

Keyboard Events 49

Clipboard Events

FL_PASTE

You should get this event some time after you call Fl::paste(). The contents of Fl::event_text()
is the text to insert and the number of characters is in Fl::event_length().

FL_SELECTIONCLEAR

The Fl::selection_owner() will get this event before the selection is moved to another widget. This indicates
that some other widget or program has claimed the selection. Motif programs used this to clear the selection
indication. Most modern programs ignore this.

Fl::event_*() methods

FLTK keeps the information about the most recent event in static storage. This information is good until the
next event is processed. Thus it is valid inside handle() and callback() methods.

These are all trivial inline functions and thus very fast and small:

Fl::event_button•
Fl::event_clicks•
Fl::event_inside•
Fl::event_is_click•
Fl::event_key•
Fl::event_length•
Fl::event_state•
Fl::event_text•
Fl::event_x•
Fl::event_x_root•
Fl::event_y•
Fl::event_y_root•
Fl::get_key•
Fl::get_mouse•
Fl::test_shortcut•

Event Propagation

FLTK follows very simple and unchangeable rules for sending events. The major innovation is that widgets
can indicate (by returning 0 from the handle() method) that they are not interested in an event, and FLTK
can then send that event elsewhere. This eliminates the need for "interests" (event masks or tables), and this is
probably the main reason FLTK is much smaller than other toolkits.

Most events are sent directly to the handle() method of the Fl_Window that the window system says they
belong to. The window (actually the Fl_Group that Fl_Window is a subclass of) is responsible for
sending the events on to any child widgets. To make the Fl_Group code somewhat easier, FLTK sends
some events (FL_DRAG, FL_RELEASE, FL_KEYBOARD, FL_SHORTCUT, FL_UNFOCUS, and
FL_LEAVE) directly to leaf widgets. These procedures control those leaf widgets:

FLTK 1.0.11 Programming Manual

50 Clipboard Events

Fl::add_handler•
Fl::belowmouse•
Fl::focus•
Fl::grab•
Fl::modal•
Fl::pushed•
Fl::release•
Fl_Widget::take_focus•

FLTK Compose−Character Sequences

The foreign−letter compose processing done by the Fl_Input widget is provided in a function that you can
call if you are writing your own text editor widget.

Fltk uses it's own compose processing to allow "preview" of the partially composed sequence, which is
impossible with the usual "dead key" processing.

Although currently only characters in the ISO−8859−1 character set are handled, you should call this in case
any enhancements to the processing are done in the future. The interface has been designed to handle
arbitrary UTF−8 encoded text.

int Fl::compose(int& del)

Use of this function is very simple. Any text editing widget should call this for each FL_KEYBOARD event.

If true is returned, then it has modified the Fl::event_text() and Fl::event_length() to a set of bytes to insert (it
may be of zero length!). In will also set the "del" parameter to the number of bytes to the left of the cursor to
delete, this is used to delete the results of the previous call to Fl::compose().

If false is returned, the keys should be treated as function keys, and del is set to zero. You could insert the text
anyways, if you don't know what else to do.

Though the current implementation returns immediately, future versions may take quite awhile, as they may
pop up a window or do other user−interface things to allow characters to be selected.

int Fl::compose_reset()

If the user moves the cursor, be sure to call Fl::compose_reset(). The next call to Fl::compose() will start out
in an initial state. In particular it will not set "del" to non−zero. This call is very fast so it is ok to call it many
times and in many places.

FLTK 1.0.11 Programming Manual

FLTK Compose−Character Sequences 51

FLTK 1.0.11 Programming Manual

52 FLTK Compose−Character Sequences

7 − Adding and Extending Widgets

This chapter describes how to add your own widgets or extend existing widgets in FLTK.

Subclassing

New widgets are created by subclassing an existing FLTK widget, typically Fl_Widget for controls and
Fl_Group for composite widgets.

A control widget typically interacts with the user to receive and/or display a value of some sort.

A composite widget widget holds a list of child widgets and handles moving, sizing, showing, or hiding them
as needed. Fl_Group is the main composite widget widget class in FLTK, and all of the other composite
widgets (Fl_Pack, Fl_Scroll, Fl_Tabs, Fl_Tile, and Fl_Window) are subclasses of it.

You can also subclass other existing widgets to provide a different look or user−interface. For example, the
button widgets are all subclasses of Fl_Button since they all interact with the user via a mouse button
click. The only difference is the code that draws the face of the button.

Making a Subclass of Fl_Widget

Your subclasses can directly descend from Fl_Widget or any subclass of Fl_Widget. Fl_Widget has
only four virtual methods, and overriding some or all of these may be necessary.

7 − Adding and Extending Widgets 53

The Constructor

The constructor should have the following arguments:

MyClass(int x, int y, int w, int h, const char *label = 0);

This will allow the class to be used in FLUID without problems.

The constructor must call the constructor for the base class and pass the same arguments:

MyClass::MyClass(int x, int y, int w, int h, const char *label)
: Fl_Widget(x, y, w, h, label) {
// do initialization stuff...
}

Fl_Widget's protected constructor sets x(), y(), w(), h(), and label() to the passed values and
initializes the other instance variables to:

type(0);
box(FL_NO_BOX);
color(FL_GRAY);
selection_color(FL_GRAY);
labeltype(FL_NORMAL_LABEL);
labelstyle(FL_NORMAL_STYLE);
labelsize(FL_NORMAL_SIZE);
labelcolor(FL_BLACK);
align(FL_ALIGN_CENTER);
callback(default_callback,0);
flags(ACTIVE|VISIBLE);

Protected Methods of Fl_Widget

The following methods are provided for subclasses to use:

Fl_Widget::clear_visible•
Fl_Widget::damage•
Fl_Widget::draw_box•
Fl_Widget::draw_label•
Fl_Widget::set_flag•
Fl_Widget::set_visible•
Fl_Widget::test_shortcut•
Fl_Widget::type•

void Fl_Widget::damage(uchar mask)
void Fl_Widget::damage(uchar mask, int x, int y, int w, int h)
uchar Fl_Widget::damage()

The first form indicates that a partial update of the object is needed. The bits in mask are OR'd into
damage(). Your draw() routine can examine these bits to limit what it is drawing. The public method
Fl_Widget::redraw() simply does Fl_Widget::damage(FL_DAMAGE_ALL), but the
implementation of your widget can call the private damage(n).

FLTK 1.0.11 Programming Manual

54 The Constructor

The second form indicates that a region is damaged. If only these calls are done in a window (no calls to
damage(n)) then FLTK will clip to the union of all these calls before drawing anything. This can greatly
speed up incremental displays. The mask bits are OR'd into damage() unless this is a Fl_Window widget.

The third form returns the bitwise−OR of all damage(n) calls done since the last draw().

When redrawing your widgets you should look at the damage bits to see what parts of your widget need
redrawing. The handle() method can then set individual damage bits to limit the amount of drawing that
needs to be done:

MyClass::handle(int event) {
 ...
 if (change_to_part1) damage(1);
 if (change_to_part2) damage(2);
 if (change_to_part3) damage(4);
}

MyClass::draw() {
 if (damage() & FL_DAMAGE_ALL) {
 ... draw frame/box and other static stuff ...
 }

 if (damage() & (FL_DAMAGE_ALL | 1)) draw_part1();
 if (damage() & (FL_DAMAGE_ALL | 2)) draw_part2();
 if (damage() & (FL_DAMAGE_ALL | 4)) draw_part3();
}

void Fl_Widget::draw_box() const
void Fl_Widget::draw_box(Fl_Boxtype b, ulong c) const

The first form draws this widget's box(), using the dimensions of the widget. The second form uses b as the
box type and c as the color for the box.

void Fl_Widget::draw_label() const
void Fl_Widget::draw_label(int x, int y, int w, int h) const
void Fl_Widget::draw_label(int x, int y, int w, int h, Fl_Align align) const

This is the usual function for a draw() method to call to draw the widget's label. It does not draw the label
if it is supposed to be outside the box (on the assumption that the enclosing group will draw those labels).

The second form uses the passed bounding box instead of the widget's bounding box. This is useful so
"centered" labels are aligned with some feature, like a moving slider.

The third form draws the label anywhere. It acts as though FL_ALIGN_INSIDE has been forced on so the
label will appear inside the passed bounding box. This is designed for parent groups to draw labels with.

void Fl_Widget::set_flag(SHORTCUT_LABEL)

Modifies draw_label() so that '&' characters cause an underscore to be printed under the next letter.

void Fl_Widget::set_visible()
void Fl_Widget::clear_visible()

FLTK 1.0.11 Programming Manual

Protected Methods of Fl_Widget 55

Fast inline versions of Fl_Widget::hide() and Fl_Widget::show(). These do not send the
FL_HIDE and FL_SHOW events to the widget.

int Fl_Widget::test_shortcut() const
static int Fl_Widget::test_shortcut(const char *s)

The first version tests Fl_Widget::label() against the current event (which should be a
FL_SHORTCUT event). If the label contains a '&' character and the character after it matches the key press,
this returns true. This returns false if the SHORTCUT_LABEL flag is off, if the label is NULL or does not have
a '&' character in it, or if the keypress does not match the character.

The second version lets you do this test against an arbitrary string.

uchar Fl_Widget::type() const
void Fl_Widget::type(uchar t)

The property Fl_Widget::type() can return an arbitrary 8−bit identifier, and can be set with the
protected method type(uchar t) . This value had to be provided for Forms compatibility, but you can
use it for any purpose you want. Try to keep the value less than 100 to not interfere with reserved values.

FLTK does not use RTTI (Run Time Typing Infomation), to enhance portability. But this may change in the
near future if RTTI becomes standard everywhere.

If you don't have RTTI you can use the clumsy FLTK mechanisim, by having type() use a unique value.
These unique values must be greater than the symbol FL_RESERVED_TYPE (which is 100). Look through
the header files for FL_RESERVED_TYPE to find an unused number. If you make a subclass of
Fl_Window you must use FL_WINDOW + n (n must be in the range 1 to 7).

Handling Events

The virtual method int Fl_Widget::handle(int event) is called to handle each event passed to
the widget. It can:

Change the state of the widget. •
Call Fl_Widget::redraw() if the widget needs to be redisplayed. •
Call Fl_Widget::damage(n) if the widget needs a partial−update (assumming you provide
support for this in your Fl_Widget::draw() method).

•

Call Fl_Widget::do_callback() if a callback should be generated. •
Call Fl_Widget::handle() on child widgets. •

Events are identified by the integer argument. Other information about the most recent event is stored in
static locations and aquired by calling the Fl::event_*() functions. This information remains valid until
another event is handled.

Here is a sample handle() method for a widget that acts as a pushbutton and also accepts the keystroke 'x'
to cause the callback:

int MyClass::handle(int event) {
 switch(event) {
 case FL_PUSH:
 highlight = 1;
 redraw();

FLTK 1.0.11 Programming Manual

56 Protected Methods of Fl_Widget

 return 1;
 case FL_DRAG: {
 int t = Fl::event_inside(this);
 if (t != highlight) {
 highlight = t;
 redraw();
 }
 }
 return 1;
 case FL_RELEASE:
 if (highlight) {
 highlight = 0;
 redraw();
 do_callback();
 // never do anything after a callback, as the callback
 // may delete the widget!
 }
 return 1;
 case FL_SHORTCUT:
 if (Fl::event_key() == 'x') {
 do_callback();
 return 1;
 }
 return 0;
 default:
 return Fl_Widget::handle(event);
 }
}

You must return non−zero if your handle() method uses the event. If you return zero it indicates to the
parent widget that it can try sending the event to another widget.

Drawing the Widget

The draw() virtual method is called when FLTK wants you to redraw your widget. It will be called if and
only if damage() is non−zero, and damage() will be cleared to zero after it returns. draw() should be
declared protected, so that it can't be called from non−drawing code.

damage() contains the bitwise−OR of all the damage(n) calls to this widget since it was last drawn. This
can be used for minimal update, by only redrawing the parts whose bits are set. FLTK will turn on the
FL_DAMAGE_ALL bit if it thinks the entire widget must be redrawn (e.g. for an expose event).

Expose events (and the above damage(b,x,y,w,h)) will cause draw() to be called with FLTK's
clipping turned on. You can greatly speed up redrawing in some cases by testing
fl_not_clipped(x,y,w,h) or fl_clip_box(...) and skipping invisible parts.

Besides the protected methods described above, FLTK provides a large number of basic drawing functions,
which are described below.

Resizing the Widget

The resize(int x, int y, int w, int h) method is called when the widget is being resized or
moved. The arguments are the new position, width, and height. x(), y(), w(), and h() still remain the old
size. You must call resize() on your base class with the same arguments to get the widget size to actually
change.

FLTK 1.0.11 Programming Manual

Drawing the Widget 57

This should not call redraw(), at least if only the x() and y() change. This is because composite widgets
like Fl_Scroll may have a more efficient way of drawing the new position.

Making a Composite Widget

A "composite" widget contains one or more "child" widgets. To make a composite widget you should
subclass Fl_Group . It is possible to make a composite object that is not a subclass of Fl_Group, but
you'll have to duplicate the code in Fl_Group anyways.

Instances of the child widgets may be included in the parent:

class MyClass : public Fl_Group {
 Fl_Button the_button;
 Fl_Slider the_slider;
 ...
};

The constructor has to initialize these instances. They are automatically add()ed to the group, since the
Fl_Group constructor does begin(). Don't forget to call end() or use the Fl_End pseudo−class:

MyClass::MyClass(int x, int y, int w, int h) :
 Fl_Group(x, y, w, h),
 the_button(x + 5, y + 5, 100, 20),
 the_slider(x, y + 50, w, 20)
{
 ...(you could add dynamically created child widgets here)...
 end(); // don't forget to do this!
}

The child widgets need callbacks. These will be called with a pointer to the children, but the widget itself
may be found in the parent() pointer of the child. Usually these callbacks can be static private methods,
with a matching private method:

void MyClass::slider_cb(Fl_Widget* v, void *) { // static method
 ((MyClass*)(v−>parent())−>slider_cb();
}
void MyClass::slider_cb() { // normal method
 use(the_slider−>value());
}

If you make the handle() method, you can quickly pass all the events to the children using the
Fl_Group::handle() method. You don't need to override handle() if your composite widget does
nothing other than pass events to the children:

int MyClass::handle(int event) {
 if (Fl_Group::handle(event)) return 1;
 ... handle events that children don't want ...
}

If you override draw() you need to draw all the children. If redraw() or damage() is called on a child,
damage(FL_DAMAGE_CHILD) is done to the group, so this bit of damage() can be used to indicate that a
child needs to be drawn. It is fastest if you avoid drawing anything else in this case:

int MyClass::draw() {
 Fl_Widget *const*a = array();

FLTK 1.0.11 Programming Manual

58 Making a Composite Widget

 if (damage() == FL_DAMAGE_CHILD) { // only redraw some children
 for (int i = children(); i −−; a ++) update_child(**a);
 } else { // total redraw
 ... draw background graphics ...
 // now draw all the children atop the background:
 for (int i = children_; i −−; a ++) {
 draw_child(**a);
 draw_outside_label(**a); // you may not want to do this
 }
 }
}

Fl_Group provides some protected methods to make drawing easier:

draw_child•
draw_outside_label•
update_child•

void Fl_Group::draw_child(Fl_Widget&)

This will force the child's damage() bits all to one and call draw() on it, then clear the damage(). You
should call this on all children if a total redraw of your widget is requested, or if you draw something (like a
background box) that damages the child. Nothing is done if the child is not visible() or if it is clipped.

void Fl_Group::draw_outside_label(Fl_Widget&) const

Draw the labels that are not drawn by draw_label(). If you want more control over the label positions
you might want to call child−>draw_label(x,y,w,h,a).

void Fl_Group::update_child(Fl_Widget&)

Draws the child only if its damage() is non−zero. You should call this on all the children if your own
damage is equal to FL_DAMAGE_CHILD. Nothing is done if the child is not visible() or if it is clipped.

Cut and Paste Support

FLTK provides routines to cut and paste 8−bit text (in the future this may be UTF−8) between applications:

Fl::paste•
Fl::selection•
Fl::selection_length•
Fl::selection_owner•

It may be possible to cut/paste non−text data by using Fl::add_handler().

Making a subclass of Fl_Window

You may want your widget to be a subclass of Fl_Window. This can be useful if your widget wants to
occupy an entire window, and can also be used to take advantage of system−provided clipping, or to work
with a library that expects a system window ID to indicate where to draw.

Subclassing Fl_Window is almost exactly like subclassing Fl_Widget, and in fact you can easily switch
a subclass back and forth. Watch out for the following differences:

FLTK 1.0.11 Programming Manual

Making a Composite Widget 59

Fl_Window is a subclass of Fl_Group so make sure your constructor calls end() (unless you
actually want children added to your window).

1.

When handling events and drawing, the upper−left corner is at 0,0, not x(),y() as in other
Fl_Widget's. For instance, to draw a box around the widget, call draw_box(0, 0, w(),
h()), rather than draw_box(x(), y(), w(), h()).

2.

You may also want to subclass Fl_Window in order to get access to different visuals or to change other
attributes of the windows. See "Appendix F − Operating System Issues" for more information.

FLTK 1.0.11 Programming Manual

60 Making a Composite Widget

8 − Programming with FLUID

This chapter shows how to use the Fast Light User−Interface Designer ("FLUID") to create your GUIs.

What is FLUID?

The Fast Light User Interface Designer, or FLUID, is a graphical editor that is used to produce FLTK source
code.

FLUID edits and saves its state in .fl files. These files are text, and you can (with care) edit them in a text
editor, perhaps to get some special effects.

FLUID can "compile" the .fl file into a .cxx and a .h file. The .cxx file defines all the objects from the
.fl file and the .h file declares all the global ones.

FLUID also supports localization (Internationalization) of label strings using message files and the GNU
gettext or POSIX catgets interfaces.

A simple program can be made by putting all your code (including a main() function) into the .fl file and
thus making the .cxx file a single source file to compile. Most programs are more complex than this, so you
write other .cxx files that call the FLUID functions. These .cxx files must #include the .h file or they
can #include the .cxx file so it still appears to be a single source file.

8 − Programming with FLUID 61

Normally the FLUID file defines one or more functions or classes which output C++ code. Each function
defines a one or more FLTK windows, and all the widgets that go inside those windows.

Widgets created by FLUID are either "named", "complex named" or "unnamed". A named widget has a legal
C++ variable identifier as its name (i.e. only alphanumeric and underscore). In this case FLUID defines a
global variable or class member that will point at the widget after the function defining it is called. A
complex named object has punctuation such as '.' or '−>' or any other symbols in its name. In this case FLUID
assigns a pointer to the widget to the name, but does not attempt to declare it. This can be used to get the
widgets into structures. An unnamed widget has a blank name and no pointer is stored.

Widgets may either call a named callback function that you write in another source file, or you can supply a
small piece of C++ source and FLUID will write a private callback function into the .cxx file.

Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filename.fl &

to edit the .fl file filename.fl. If the file does not exist you will get an error pop−up, but if you dismiss
it you will be editing a blank file of that name. You can run FLUID without any name, in which case you will
be editing an unnamed blank setup (but you can use save−as to write it to a file).

You can provide any of the standard FLTK switches before the filename:

−display host:n.n
−geometry WxH+X+Y
−title windowtitle
−name classname
−iconic
−fg color
−bg color
−bg2 color

Changing the colors may be useful to see what your interface will look at if the user calls it with the same
switches.

FLTK 1.0.11 Programming Manual

62 Running FLUID Under UNIX

In the current version, if you don't go into the background (with '&') then you will be able to abort FLUID by
typing ^C on the terminal. It will exit immediately, losing any changes.

Running FLUID Under Microsoft Windows

To run FLUID under WIN32, double−click on the FLUID.exe file. You can also run FLUID from the
Command Prompt window (FLUID always runs in the background under WIN32).

Compiling .fl files

FLUID can also be called as a command−line "compiler" to create the .cxx and .h file from a .fl file. To
do this type:

fluid −c filename.fl

This will read the filename.fl file and write filename.cxx and filename.h. The directory will be stripped,
so they are written to the current directory always. If there are any errors reading or writing the files it will
print the error and exit with a non−zero code. In a makefile you can use a line like this:

my_panels.h my_panels.cxx: my_panels.fl
 fluid −c my_panels.fl

Some versions of make will accept rules like this to allow all .fl files found to be compiled:

.SUFFIXES: .fl .cxx .h

.fl.h .fl.cxx:
 fluid −c $<

A Short Tutorial

FLUID is an amazingly powerful little program. However, this power comes at a price as it is not always
obvious how to accomplish seemingly simple tasks with it. This tutorial will show you how to generate a
complete user interface class with FLUID that is used for the CubeView program provided with FLTK.

FLTK 1.0.11 Programming Manual

Running FLUID Under Microsoft Windows 63

The window is of class CubeViewUI, and is completely generated by FLUID, including class member
functions. The central display of the cube is a separate subclass of Fl_Gl_Window called CubeView.
CubeViewUI manages CubeView using callbacks from the various sliders and rollers to manipulate the
viewing angle and zoom of CubeView.

At the completion of this tutorial you will (hopefully) understand how to:

Use FLUID to create a complete user interface class, including constructor and any member
functions necessary.

1.

Use FLUID to set callbacks member functions of a custom widget classes. 2.
Subclass an Fl_Gl_Window to suit your purposes. 3.

The CubeView Class

The CubeView class is a subclass of Fl_Gl_Window. It has methods for setting the zoom, the x and y pan,
and the rotation angle about the x and yaxes.

You can safely skip this section as long as you realize the CubeView is a sublass of Fl_Gl_Window and
will respond to calls from CubeViewUI, generated by FLUID.

The CubeView Class Definition

Here is the CubeView class definition, as given by its header file "test/CubeView.h":

class CubeView : public Fl_Gl_Window {

FLTK 1.0.11 Programming Manual

64 A Short Tutorial

 public:
 CubeView(int x,int y,int w,int h,const char *l=0);
 // this value determines the scaling factor used to draw the cube.
 double size;
 /* Set the rotation about the vertical (y) axis.
 *
 * This function is called by the horizontal roller in CubeViewUI
 * and the initialize button in CubeViewUI.
 */
 void v_angle(float angle){vAng=angle;};
 // Return the rotation about the vertical (y) axis.
 float v_angle(){return vAng;};
 /* Set the rotation about the horizontal (x) axis.
 *
 * This function is called by the vertical roller in CubeViewUI
 and the
 * initialize button in CubeViewUI.
 */
 void h_angle(float angle){hAng=angle;};
 // the rotation about the horizontal (x) axis.
 float h_angle(){return hAng;};
 /* Sets the x shift of the cube view camera.
 *
 * This function is called by the slider in CubeViewUI and the
 * initialize button in CubeViewUI.
 */
 void panx(float x){xshift=x;};
 /* Sets the y shift of the cube view camera.
 *
 * This function is called by the slider in CubeViewUI and the
 * initialize button in CubeViewUI.
 */
 void pany(float y){yshift=y;};
 /* The widget class draw() override.
 * The draw() function initialize Gl for another round of
 * drawing then calls specialized functions for drawing each
 * of the entities displayed in the cube view.
 */
 void draw();

 private:
 /* Draw the cube boundaries
 * Draw the faces of the cube using the boxv[] vertices, using
 * GL_LINE_LOOP for the faces. The color is #defined by
 * CUBECOLOR.
 */
 void drawCube();

 float vAng,hAng; float xshift,yshift;

 float boxv0[3];float boxv1[3]; float boxv2[3];float boxv3[3];
 float boxv4[3];float boxv5[3]; float boxv6[3];float boxv7[3];
};

The CubeView Class Implementation

Here is the CubeView implementation. It is very similar to the "cube" demo included with FLTK.

#include "CubeView.h"
#include <math.h>

FLTK 1.0.11 Programming Manual

A Short Tutorial 65

CubeView::CubeView(int x,int y,int w,int h,const char *l)
 : Fl_Gl_Window(x,y,w,h,l)
{
 vAng = 0.0; hAng=0.0; size=10.0;
 /* The cube definition. These are the vertices of a unit cube
 * centered on the origin.*/
 boxv0[0] = −0.5; boxv0[1] = −0.5; boxv0[2] = −0.5; boxv1[0] = 0.5;
 boxv1[1] = −0.5; boxv1[2] = −0.5; boxv2[0] = 0.5; boxv2[1] = 0.5;
 boxv2[2] = −0.5; boxv3[0] = −0.5; boxv3[1] = 0.5; boxv3[2] = −0.5;
 boxv4[0] = −0.5; boxv4[1] = −0.5; boxv4[2] = 0.5; boxv5[0] = 0.5;
 boxv5[1] = −0.5; boxv5[2] = 0.5; boxv6[0] = 0.5; boxv6[1] = 0.5;
 boxv6[2] = 0.5; boxv7[0] = −0.5; boxv7[1] = 0.5; boxv7[2] = 0.5;
};

// The color used for the edges of the bounding cube.
#define CUBECOLOR 255,255,255,255

void CubeView::drawCube() {
/* Draw a colored cube */
#define ALPHA 0.5
 glShadeModel(GL_FLAT);

 glBegin(GL_QUADS);
 glColor4f(0.0, 0.0, 1.0, ALPHA);
 glVertex3fv(boxv0);
 glVertex3fv(boxv1);
 glVertex3fv(boxv2);
 glVertex3fv(boxv3);

 glColor4f(1.0, 1.0, 0.0, ALPHA);
 glVertex3fv(boxv0);
 glVertex3fv(boxv4);
 glVertex3fv(boxv5);
 glVertex3fv(boxv1);

 glColor4f(0.0, 1.0, 1.0, ALPHA);
 glVertex3fv(boxv2);
 glVertex3fv(boxv6);
 glVertex3fv(boxv7);
 glVertex3fv(boxv3);

 glColor4f(1.0, 0.0, 0.0, ALPHA);
 glVertex3fv(boxv4);
 glVertex3fv(boxv5);
 glVertex3fv(boxv6);
 glVertex3fv(boxv7);

 glColor4f(1.0, 0.0, 1.0, ALPHA);
 glVertex3fv(boxv0);
 glVertex3fv(boxv3);
 glVertex3fv(boxv7);
 glVertex3fv(boxv4);

 glColor4f(0.0, 1.0, 0.0, ALPHA);
 glVertex3fv(boxv1);
 glVertex3fv(boxv5);
 glVertex3fv(boxv6);
 glVertex3fv(boxv2);
 glEnd();

 glColor3f(1.0, 1.0, 1.0);
 glBegin(GL_LINES);

FLTK 1.0.11 Programming Manual

66 A Short Tutorial

 glVertex3fv(boxv0);
 glVertex3fv(boxv1);

 glVertex3fv(boxv1);
 glVertex3fv(boxv2);

 glVertex3fv(boxv2);
 glVertex3fv(boxv3);

 glVertex3fv(boxv3);
 glVertex3fv(boxv0);

 glVertex3fv(boxv4);
 glVertex3fv(boxv5);

 glVertex3fv(boxv5);
 glVertex3fv(boxv6);

 glVertex3fv(boxv6);
 glVertex3fv(boxv7);

 glVertex3fv(boxv7);
 glVertex3fv(boxv4);

 glVertex3fv(boxv0);
 glVertex3fv(boxv4);

 glVertex3fv(boxv1);
 glVertex3fv(boxv5);

 glVertex3fv(boxv2);
 glVertex3fv(boxv6);

 glVertex3fv(boxv3);
 glVertex3fv(boxv7);
 glEnd();
};//drawCube

void CubeView::draw() {
 if (!valid()) {
 glLoadIdentity(); glViewport(0,0,w(),h());
 glOrtho(−10,10,−10,10,−20000,10000); glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 }

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix(); glTranslatef(xshift, yshift, 0);
 glRotatef(hAng,0,1,0); glRotatef(vAng,1,0,0);
 glScalef(float(size),float(size),float(size)); drawCube();
 glPopMatrix();
};

The CubeViewUI Class

We will completely construct a window to display and control the CubeView defined in the previous section
using FLUID.

FLTK 1.0.11 Programming Manual

A Short Tutorial 67

Defining the CubeViewUI Class

Once you have started FLUID, the first step in defining a class is to create a new class within FLUID using
the New−>Code−>Class menu item. Name the class "CubeViewUI" and leave the subclass blank. We do not
need any inheritance for this window. You should see the new class declaration in the FLUID browser
window.

Adding the Class Constructor

Click on the CubeViewUI class in the FLUID window and add a new method by selecting
New−>Code−>Function/Method. The name of the function will also be CubeViewUI. FLUID will
understands that this will be the constructor for the class and will generate the appropriate code. Make sure
you declare the constructor public.

Then add a window to the CubeViewUI class. Highlight the name of the constructor in the FLUID browser
window and click on New−>Group−>Window. In a similar manner add the following to the CubeViewUI
constructor:

A horizontal roller named hrot•
A vertical roller named vrot•
A horizontal slider named xpan•
A vertical slider named ypan•
A horizontal value slider named zoom•

None of these additions need be public. And they shouldn't be unless you plan to expose them as part of the
interface for CubeViewUI.

When you are finished you should have something like this:

FLTK 1.0.11 Programming Manual

68 A Short Tutorial

We will talk about the show() method that is highlighted shortly.

Adding the CubeView Widget

What we have is nice, but does little to show our cube. We have already defined the CubeView class and we
would like to show it within the CubeViewUI.

The CubeView class inherits the Fl_Gl_Window class, which is created in the same way as a
Fl_Box widget. Use New−>Other−>Box to add a square box to the main window. This will be no ordinary
box, however.

The Box properties window will appear. The key to letting CubeViewUI display CubeView is to enter
CubeView in the "Class:" text entry box. This tells FLUID that it is not an Fl_Box, but a similar widget
with the same constructor. In the "Extra Code:" field enter #include "CubeView.h"

This #include is important, as we have just included CubeView as a member of CubeViewUI, so any
public CubeView methods are now available to CubeViewUI.

FLTK 1.0.11 Programming Manual

A Short Tutorial 69

Defining the Callbacks

Each of the widgets we defined before adding CubeView can have callbacks that call CubeView methods.
You can call an external function or put in a short amount of code in the "Callback" field of the widget panel.
For example, the callback for the ypan slider is:

cube−>pany(((Fl_Slider *)o)−>value());
cube−>redraw();

We call cube−>redraw() after changing the value to update the CubeView window. CubeView could
easily be modified to do this, but it is nice to keep this exposed in the case where you may want to do more
than one view change only redrawing once saves a lot of time.

There is no reason no wait until after you have added CubeView to enter these callbacks. FLUID assumes
you are smart enough not to refer to members or functions that don't exist.

Adding a Class Method

You can add class methods within FLUID that have nothing to do with the GUI. An an example add a show
function so that CubeViewUI can actually appear on the screen.

FLTK 1.0.11 Programming Manual

70 A Short Tutorial

Make sure the top level CubeViewUI is selected and select New−>Code−>Function/Method. Just use the
name show(). We don't need a return value here, and since we will not be adding any widgets to this
method FLUID will assign it a return type of void.

Once the new method has been added, highlight its name and select New−>Code−>Code. Enter the method's
code in the code window.

Adding Constructor Initialization Code

If you need to add code to initialize class, for example setting initial values of the horizontal and vertical
angles in the CubeView, you can simply highlight the Constructor and select New−>Code−>Code. Add any
required code.

Generating the Code

Now that we have completely defined the CubeViewUI, we have to generate the code. There is one last trick
to ensure this all works. Open the preferences dialog from Edit−>Preferences.

At the bottom of the preferences dialog box is the key: "Include Header from Code". Select that option and
set your desired file extensions and you are in business. You can include the CubeViewUI.h (or whatever
extension you prefer) as you would any other C++ class.

FLTK 1.0.11 Programming Manual

A Short Tutorial 71

FLUID Reference

The Widget Browser

The main window shows a menu bar and a scrolling browser of all the defined widgets. The name of the
.fl file being edited is shown in the window title.

The widgets are stored in a hierarchy. You can open and close a level by clicking the "triangle" at the left of a
widget. The leftmost widgets are the parents, and all the widgets listed below them are their children. Parents
don't have to have any children.

The top level of the hierarchy is composed of functions and classes. Each of these will produce a single C++
public function or class in the output .cxx file. Calling the function or instantiating the class will create all
of the child widgets.

The second level of the hierarchy contains the windows. Each of these produces an instance of class
Fl_Window.

Below that are either widgets (subclasses of Fl_Widget) or groups of widgets (including other groups).
Plain groups are for layout, navigation, and resize purposes. Tab groups provide the well−known file−card
tab interface.

Widgets are shown in the browser by either their name (such as "main_panel" in the example), or by their
type and label (such as "Button "the green"").

You select widgets by clicking on their names, which highlights them (you can also select widgets from any
displayed window). You can select many widgets by dragging the mouse across them, or by using
Shift+Click to toggle them on and off. To select no widgets, click in the blank area under the last widget.
Note that hidden children may be selected even when there is no visual indication of this.

You open widgets by double−clicking on them, or (to open several widgets you have picked) by typing the
F1 key. A control panel will appear so you can change the widget(s).

Menu Items

The menu bar at the top is duplicated as a pop−up menu on any displayed window. The shortcuts for all the
menu items work in any window. The menu items are:

File/Open... (Alt+o)

Discards the current editing session and reads in a different .fl file. You are asked for confirmation if you
have changed the current file.

FLUID can also read .fd files produced by the Forms and XForms "fdesign" programs. It is best to
File/Merge them instead of opening them. FLUID does not understand everything in a .fd file, and will
print a warning message on the controlling terminal for all data it does not understand. You will probably
need to edit the resulting setup to fix these errors. Be careful not to save the file without changing the name,
as FLUID will write over the .fd file with its own format, which fdesign cannot read!

FLTK 1.0.11 Programming Manual

72 FLUID Reference

File/Save (Alt+s)

Writes the current data to the .fl file. If the file is unnamed then FLUID will ask for a filename.

File/Save As...(Alt+Shift+S)

Asks for a new filename and saves the file.

File/Merge... (Alt+i)

Inserts the contents of another .fl file, without changing the name of the current .fl file. All the functions
(even if they have the same names as the current ones) are added, and you will have to use cut/paste to put the
widgets where you want.

File/Write Code (Alt+Shift+C)

"Compiles" the data into a .cxx and .h file. These are exactly the same as the files you get when you run
FLUID with the −c switch.

The output file names are the same as the .fl file, with the leading directory and trailing ".fl" stripped, and
".h" or ".cxx" appended.

File/Write Messages (Alt+Shift+W)

Writes a message file for all of the text labels defined in the current file.

The output file name is the same as the .fl file, with the leading directory and trailing ".fl" stripped, and
".txt", ".po", or ".msg" appended depending on the Internationalization Mode.

File/Quit (Alt+q)

Exits FLUID. You are asked for confirmation if you have changed the current data.

Edit/Undo (Alt+z)

This isn't implemented yet. You should do save often so you can recover from any mistakes you make.

Edit/Cut (Alt+x)

Deletes the selected widgets and all of their children. These are saved to a "clipboard" file and can be pasted
back into any FLUID window.

Edit/Copy (Alt+c)

Copies the selected widgets and all of their children to the "clipboard" file.

Edit/Paste (Alt+c)

Pastes the widgets from the clipboard file.

If the widget is a window, it is added to whatever function is selected, or contained in the current selection.

FLTK 1.0.11 Programming Manual

FLUID Reference 73

If the widget is a normal widget, it is added to whatever window or group is selected. If none is, it is added to
the window or group that is the parent of the current selection.

To avoid confusion, it is best to select exactly one widget before doing a paste.

Cut/paste is the only way to change the parent of a widget.

Edit/Select All (Alt+a)

Selects all widgets in the same group as the current selection.

If they are all selected already then this selects all widgets in that group's parent. Repeatedly typing Alt+a
will select larger and larger groups of widgets until everything is selected.

Edit/Open... (F1 or double click)

Displays the current widget in the attributes panel. If the widget is a window and it is not visible then the
window is shown instead.

Edit/Sort

Sorts the selected widgets into left to right, top to bottom order. You need to do this to make navigation keys
in FLTK work correctly. You may then fine−tune the sorting with "Earlier" and "Later". This does not affect
the positions of windows or functions.

Edit/Earlier (F2)

Moves all of the selected widgets one earlier in order among the children of their parent (if possible). This
will affect navigation order, and if the widgets overlap it will affect how they draw, as the later widget is
drawn on top of the earlier one. You can also use this to reorder functions, classes, and windows within
functions.

Edit/Later (F3)

Moves all of the selected widgets one later in order among the children of their parent (if possible).

Edit/Group (F7)

Creates a new Fl_Group and make all the currently selected widgets children of it.

Edit/Ungroup (F8)

Deletes the parent group if all the children of a group are selected.

Edit/Overlays on/off (Alt+Shift+O)

Toggles the display of the red overlays off, without changing the selection. This makes it easier to see box
borders and how the layout looks. The overlays will be forced back on if you change the selection.

FLTK 1.0.11 Programming Manual

74 FLUID Reference

Edit/Preferences (Alt+p)

Displays the preferences panel. The alignment preferences control the grid that all widgets snap to when you
move and resize them, and for the "snap" which is how far a widget has to be dragged from its original
position to actually change.

The output filenames control the extensions or names of the files the are generated by FLUID. If you check
the "Include .h from .cxx" button the code file will include the header file automatically.

The internationalization options are described later in this chapter.

New/Code/Function

Creates a new C function. You will be asked for a name for the function. This name should be a legal C++
function template, without the return type. You can pass arguments which can be referred to by code you type
into the individual widgets.

If the function contains any unnamed windows, it will be declared as returning a Fl_Window pointer. The
unnamed window will be returned from it (more than one unnamed window is useless). If the function
contains only named windows, it will be declared as returning nothing (void).

It is possible to make the .cxx output be a self−contained program that can be compiled and executed. This
is done by deleting the function name so main(argc,argv) is used. The function will call show() on all
the windows it creates and then call Fl::run(). This can also be used to test resize behavior or other parts
of the user interface.

You can change the function name by double−clicking on the function.

FLTK 1.0.11 Programming Manual

FLUID Reference 75

New/Window

Creates a new Fl_Window widget. The window is added to the currently selected function, or to the
function containing the currently selected item. The window will appear, sized to 100x100. You can resize it
to whatever size you require.

The widget panel will also appear and is described later in this chapter.

New/...

All other items on the New menu are subclasses of Fl_Widget. Creating them will add them to the
currently selected group or window, or the group or window containing the currently selected widget. The
initial dimensions and position are chosen by copying the current widget, if possible.

When you create the widget you will get the widget's control panel, which is described later in this chapter.

Help/About FLUID

Pops up a panel showing the version of FLUID.

The Widget Panel

When you double−click on a widget or a set of widgets you will get the "widget attribute panel".

When you change attributes using this panel, the changes are reflected immediately in the window. It is
useful to hit the "no overlay" button (or type Alt+Shift+O) to hide the red overlay so you can see the widgets
more accurately, especially when setting the box type.

If you have several widgets selected, they may have different values for the fields. In this case the value for
one of the widgets is shown. But if you change this value, all of the selected widgets are changed to the new
value.

Hitting "OK" makes the changes permanent. Selecting a different widget also makes the changes permanent.
FLUID checks for simple syntax errors such as mismatched parenthesis in any code before saving any text.

"Revert" or "Cancel" put everything back to when you last brought up the panel or hit OK. However in the
current version of FLUID, changes to "visible" attributes (such as the color, label, box) are not undone by
revert or cancel. Changes to code like the callbacks are undone, however.

FLTK 1.0.11 Programming Manual

76 FLUID Reference

Widget Attributes

Name (text field)

Name of a variable to declare, and to store a
pointer to this widget into. This variable will
be of type "<class>*". If the name is blank
then no variable is created.

You can name several widgets with
"name[0]", "name[1]", "name[2]", etc. This
will cause FLUID to declare an array of
pointers. The array is big enough that the
highest number found can be stored. All
widgets that in the array must be the same
type.

Type (upper−right pulldown menu)

Some classes have subtypes that modify
their appearance or behavior. You pick the
subtype off of this menu.

Box (pulldown menu)

The boxtype to draw as a background for the
widget.

Many widgets will work, and draw faster, with a "frame" instead of a "box". A frame does not draw the
colored interior, leaving whatever was already there visible. Be careful, as FLUID may draw this ok but the
real program may leave unwanted stuff inside the widget.

If a window is filled with child widgets, you can speed up redrawing by changing the window's box type to
"NO_BOX". FLUID will display a checkerboard for any areas that are not colored in by boxes. Note that this
checkerboard is not drawn by the resulting program. Instead random garbage will be displayed.

Color

The color to draw the box with.

Color2

Some widgets will use this color for certain parts. FLUID does not always show the result of this: this is the
color buttons draw in when pushed down, and the color of input fields when they have the focus.

Label

String to print next to or inside the button.

You can put newlines into the string to make multiple lines. The easiest way is by typing Ctrl+j.

FLTK 1.0.11 Programming Manual

FLUID Reference 77

Label style (pull down menu)

How to draw the label. Normal, shadowed, engraved, and embossed change the appearance of the text.
"symbol" requires the label to start with an '@' sign to draw a named symbol.

From this menu you can also pick "Image...". This lets you use the contents of a GIF, XPM, or XBM image
file to label the widget.

Label Alignment (Buttons)

Where to draw the label. The arrows put it on that side of the widget, you can combine the to put it in the
corner. The "box" button puts the label inside the widget, rather than outside.

Label Font

Font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. Your program can change the actual
font used by these "slots" in case you want some font other than the 16 provided.

Label Size

Pixel size (height) for the font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. To see the
result without dismissing the panel, type the new number and then Tab.

Label Color

Color to draw the label. Ignored by pixmaps (bitmaps, however, do use this color as the foreground color).

Text Font, Size, and Color

Some widgets display text, such as input fields, pull−down menus, and browsers.

Visible

If you turn this off then the widget is hidden initially. Don't change this for windows or for the immediate
children of a Tabs group.

Active

If you turn this off then the widget is deactivated initially.

Resizable

If a window is resizable or has an immediate child that is resizable, then the user will be able to resize it. In
addition all the size changes of a window or group will go "into" the resizable child. If you have a large data
display surrounded by buttons, you probably want that data area to be resizable.

Only one child can be resizable. Turning this on turns it off for the other children.

You can get more complex behavior by making invisible boxes the resizable widget, or by using hierarchies
of groups. Unfortunately the only way to test it is to compile the program. Resizing the FLUID window is
not the same as what will happen in the user program.

FLTK 1.0.11 Programming Manual

78 FLUID Reference

Hotspot

Each window may have exactly one hotspot (turning this on will turn off any others). This will cause it to be
positioned with that widget centered on the mouse. This position is determined when the FLUID function is
called, so you should call it immediately before showing the window. If you want the window to hide and
then reappear at a new position, you should have your program set the hotspot itself just before show().

Subclass

This is how you use your own subclasses of Fl_Widget. Whatever identifier you type in here will be the
class that is instantiated.

In addition, no #include header file is put in the .h file. You must provide a #include line as the first
line of the "Extra Code" which declares your subclass.

The class must be similar to the class you are spoofing. It does not have to be a subclass. It is sometimes
useful to change this to another FLTK class. Currently the only way to get a double−buffered window is to
change this field for the window to "Fl_Double_Window" and to add "#include <FL/Fl_Double_Window.h>"
to the extra code.

Extra Code

These four fields let you type in literal lines of code to dump into the .h or .cxx files.

If the text starts with a # or the word extern then FLUID thinks this is an "include" line, and it is written to
the .h file. If the same include line occurs several times then only one copy is written.

All other lines are "code" lines. The current widget is pointed to by the local variable o. The window being
constructed is pointed to by the local variable w. You can also access any arguments passed to the function
here, and any named widgets that are before this one.

FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error checking.
Be careful here, as it may be hard to figure out what widget is producing an error in the compiler. If you need
more than four lines you probably should call a function in your own .cxx code.

Callback

This can either be the name of a function, or a small snippet of code. If you enter anything but letters,
numbers, and the underscore then FLUID treats it as code.

A name names a function in your own code. It must be declared as void name(<class>*,void*).

A code snippet is inserted into a static function in the .cxx output file. The function prototype is void
name(class *o, void *v) so that you can refer to the widget as o and the user_data() as v.
FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error checking.
Be careful here, as it may be hard to figure out what widget is producing an error in the compiler.

If the callback is blank then no callback is set.

FLTK 1.0.11 Programming Manual

FLUID Reference 79

user_data

This is a value for the user_data() of the widget. If blank the default value of zero is used. This can be
any piece of C code that can be cast to a void pointer.

User Data Type

The void * in the callback function prototypes is replaced with this. You may want to use long for old
XForms code. Be warned that anything other than void * is not guaranteed to work! However on most
architectures other pointer types are ok, and long is usually ok, too.

When

When to do the callback. This can be "never", "changed", "release", "enter key", or "no change". The value of
"enter key" is only useful for text input fields. The "no change" button means the callback is done on the
matching event even if the data is not changed.

There are other rare but useful values for the when() field that are not in the menu. You should use the extra
code fields to put these values in.

Selecting and Moving Widgets

Double−clicking a window name in the browser will display it, if not displayed yet. From this display you
can select widgets, sets of widgets, and move or resize them. To close a window either double−click it or type
Esc.

To select a widget, click it. To select several widgets drag a rectangle around them. Holding down shift will
toggle the selection of the widgets instead.

You cannot pick hidden widgets. You also cannot choose some widgets if they are completely overlapped by
later widgets. Use the browser to select these widgets.

The selected widgets are shown with a red "overlay" line around them. You can move the widgets by
dragging this box. Or you can resize them by dragging the outer edges and corners. Hold down the Alt key
while dragging the mouse to defeat the snap−to−grid effect for fine positioning.

If there is a tab box displayed you can change which child is visible by clicking on the file tabs. The child you
pick is selected.

The arrow, tab, and shift+tab keys "navigate" the selection. Left, right, tab, or shift+tab move to the next or
previous widgets in the hierarchy. Hit the right arrow enough and you will select every widget in the window.
Up/down widgets move to the previous/next widgets that overlap horizontally. If the navigation does not
seem to work you probably need to "Sort" the widgets. This is important if you have input fields, as FLTK
uses the same rules when using arrow keys to move between input fields.

To "open" a widget, double click it. To open several widgets select them and then type F1 or pick
"Edit/Open" off the pop−up menu.

Type Alt+o to temporarily toggle the overlay off without changing the selection, so you can see the widget
borders.

FLTK 1.0.11 Programming Manual

80 FLUID Reference

You can resize the window by using the window manager border controls. FLTK will attempt to round the
window size to the nearest multiple of the grid size and makes it big enough to contain all the widgets (it does
this using illegal X methods, so it is possible it will barf with some window managers!). Notice that the actual
window in your program may not be resizable, and if it is, the effect on child widgets may be different.

The panel for the window (which you get by double−clicking it) is almost identical to the panel for any other
Fl_Widget. There are three extra items:

Border

This button turns the window manager border on or off. On most window managers you will have to close
the window and reopen it to see the effect.

xclass

The string typed into here is passed to the X window manager as the class. This can change the icon or
window decorations. On most (all?) window managers you will have to close the window and reopen it to see
the effect.

Image Labels

Selecting "Image..." off the label style pull−down menu will bring up a file chooser from which you pick the
image file. If an image has already been chosen, you can change the image used by picking "Image..." again.
The name of the image will appear in the "label" field, but you can't edit it.

The contents of the image file are written to the .cxx file, so if you wish to distribute the C code, you only
need to copy the .cxx file, not the images. If many widgets share the same image then only one copy is
written.

However the file name is stored in the .fl file, so to read the .fl file you need the image files as well.
Filenames are relative to the location the .fl file is (not necessarily the current directory). I recommend you
either put the images in the same directory as the .fl file, or use absolute path names.

Notes for all image types

FLUID runs using the default visual of your X server. This may be 8 bits, which will give you dithered
images. You may get better results in your actual program by adding the code "Fl::visual(FL_RGB)" to your
code right before the first window is displayed.

All widgets with the same image on them share the same code and source X pixmap. Thus once you have put
an image on a widget, it is nearly free to put the same image on many other widgets.

If you are using a painting program to edit an image: the only way to convince FLUID to read the image file
again is to remove the image from all widgets that are using it (including ones in closed windows), which will
cause it to free its internal copy, and then set the image again. You may find it easier to exit FLUID and run it
again.

Don't rely on how FLTK crops images that are outside the widget, as this may change in future versions! The
cropping of inside labels will probably be unchanged.

FLTK 1.0.11 Programming Manual

FLUID Reference 81

To more accurately place images, make a new "box" widget and put the image in that as the label. This is also
how you can put both an image and text label on the same widget. If your widget is a button, and you want
the image inside it, you must change the button's boxtype to FL_UP_FRAME (or another frame), otherwise
when it is pushed it will erase the image.

XBM (X bitmap files)

FLUID will read X bitmap files. These files have C source code to define a bitmap. Sometimes they are
stored with the ".h" or ".bm" extension rather than the standard ".xbm".

FLUID will output code to construct an Fl_Bitmap widget and use it to label the widget. The '1' bits in the
bitmap are drawn using the label color of the widget. You can change the color in FLUID. The '0' bits are
transparent.

The program "bitmap" on the X distribution does an ok job of editing bitmaps.

XPM (X pixmap files)

FLUID will read X pixmap files as used by the libxpm library. These files have C source code to define a
pixmap. The filenames usually have a ".xpm" extension.

FLUID will output code to construct an Fl_Pixmap widget and use it to label the widget. The label color of
the widget is ignored, even for 2−color images that could be a bitmap.

XPM files can mark a single color as being transparent. Currently FLTK and FLUID simulate this
transparency rather badly. It will use the color() of the widget as the background, and all widgets using the
same pixmap are assummed to have the same color. This may be fixed in the future or on non−X systems.

I have not found any good editors for small iconic pictures. For pixmaps I have used XPaint. This (and most
other) painting programs are designed for large full color images and are difficult to use to edit an image of
small size and few colors.

GIF files

FLUID will also read GIF image files. These files are often used on html documents to make icons. This lets
you use nice icons that you steal off the net in your user interface.

FLUID converts these into (modified) XPM format and uses an Fl_Pixmap widget to label the widget.
Transparency is handled the same as for xpm files. Notice that the conversion removes the compression, so
the code may be much bigger than the .gif file. Only the first image of an animated gif file is used.

Behavior and performance with large .gif files is not guaranteed!

Internationalization with FLUID

FLUID supports internationalization (I18N for short) of label strings used by widgets. The preferences
window (Alt+p) provides access to the I18N options.

FLTK 1.0.11 Programming Manual

82 FLUID Reference

http://home.worldonline.dk/~torsten/xpaint/index.html

I18N Methods

FLUID supports three methods of I18N: use none, use GNU gettext, and use POSIX catgets. The "use none"
method is the default and just passes the label strings as−is to the widget constructors.

The "GNU gettext" method uses GNU gettext (or a similar text−based I18N library) to retrieve a localized
string before calling the widget constructor.

The "POSIX catgets" method uses the POSIX catgets function to retrieve a numbered message from a
message catalog before calling the widget constructor.

Using GNU gettext for I18N

FLUID's code support for GNU gettext is limited to calling a function or macro to retrieve the localized label;
you still need to call setlocale() and textdomain() or bindtextdomain() to select the
appropriate language and message file.

To use GNU gettext for I18N, open the preferences window and choose "GNU gettext" from the "Use"
chooser. Two new input fields will then appear to control the include file and function/macro name to use
when retrieving the localized label strings.

The "#include" field controls the header file to include for I18N; by default this is <libintl.h>, the
standard I18N file for GNU gettext.

The "Function" field controls the function (or macro) that will retrieve the localized message; by default the
gettext function will be called.

Using POSIX catgets for I18N

FLUID's code support for POSIX catgets allows you to use a global message file for all interfaces or a file

FLTK 1.0.11 Programming Manual

Internationalization with FLUID 83

specific to each .fl file; you still need to call setlocale() to select the appropriate language.

To use POSIX catgets for I18N, open the preferences window and choose "POSIX catgets" from the "Use"
chooser. Three new input fields will then appear to control the include file, catalog file, and set number for
retrieving the localized label strings.

The "#include" field controls the header file to include for I18N; by default this is <nl_types.h>, the
standard I18N file for POSIX catgets.

The "File" field controls the name of the catalog file variable to use when retrieving localized messages; by
default the file field is empty which forces a local (static) catalog file to be used for all of the windows
defined in your .fl file.

The "Set" field controls the set number in the catalog file. The default set is 1 and rarely needs to be changed.

FLTK 1.0.11 Programming Manual

84 Internationalization with FLUID

9 − Using OpenGL

This chapter discusses using FLTK for your OpenGL applications.

Using OpenGL in FLTK

The easiest way to make an OpenGL display is to subclass Fl_Gl_Window. Your subclass must implement
a draw() method which uses OpenGL calls to draw the display. Your main program should call
redraw() when the display needs to change, and (somewhat later) FLTK will call draw().

With a bit of care you can also use OpenGL to draw into normal FLTK windows. This allows you to use
Gouraud shading for drawing your widgets. To do this you use the gl_start() and
gl_finish() functions around your OpenGL code.

You must include FLTK's <FL/gl.h> header file. It will include the file <GL/gl.h>, define some extra
drawing functions provided by FLTK, and include the <windows.h> header file needed by WIN32
applications.

Making a Subclass of Fl_Gl_Window

To make a subclass of Fl_Gl_Window, you must provide:

A class definition. •
A draw() method. •
A handle() method (if you need to recieve input from the user). •

9 − Using OpenGL 85

If your subclass provides static controls in the window, they must be redrawn whenever the
FL_DAMAGE_ALL bit is set in the value returned by damage(). For double−buffered windows you will
need to surround the drawing code with the following code to make sure that both buffers are redrawn:

#ifndef MESA
glDrawBuffer(GL_FRONT_AND_BACK);
#endif // !MESA
... draw stuff here ...
#ifndef MESA
glDrawBuffer(GL_BACK);
#endif // !MESA

Note: If you are using the Mesa graphics library, the call to glDrawBuffer() is not required and will slow
down drawing considerably. The preprocessor instructions shown above will optimize your code based upon
the graphics library used.

Defining the Subclass

To define the subclass you just subclass the Fl_Gl_Window class:

class MyWindow : public Fl_Gl_Window {
 void draw();
 int handle(int);

public:
 MyWindow(int X, int Y, int W, int H, const char *L)
 : Fl_Gl_Window(X, Y, W, H, L) {}
};

The draw() and handle() methods are described below. Like any widget, you can include additional
private and public data in your class (such as scene graph information, etc.)

The draw() Method

The draw() method is where you actually do your OpenGL drawing:

void MyWindow::draw() {
 if (!valid()) {
 ... set up projection, viewport, etc ...
 ... window size is in w() and h().
 ... valid() is turned on by FLTK after draw() returns
 }
 ... draw ...
}

The handle() Method

The handle() method handles mouse and keyboard events for the window:

int MyWindow::handle(int event) {
 switch(event) {
 case FL_PUSH:
 ... mouse down event ...
 ... position in Fl::event_x() and Fl::event_y()
 return 1;
 case FL_DRAG:
 ... mouse moved while down event ...

FLTK 1.0.11 Programming Manual

86 Making a Subclass of Fl_Gl_Window

 return 1;
 case FL_RELEASE:
 ... mouse up event ...
 return 1;
 case FL_FOCUS :
 case FL_UNFOCUS :
 ... Return 1 if you want keyboard events, 0 otherwise
 return 1;
 case FL_KEYBOARD:
 ... keypress, key is in Fl::event_key(), ascii in Fl::event_text()
 ... Return 1 if you understand/use the keyboard event, 0 otherwise...
 return 1;
 case FL_SHORTCUT:
 ... shortcut, key is in Fl::event_key(), ascii in Fl::event_text()
 ... Return 1 if you understand/use the shortcut event, 0 otherwise...
 return 1;
 default:
 // pass other events to the base class...
 return Fl_Gl_Window::handle(event);
 }
}

When handle() is called, the OpenGL context is not set up! If your display changes, you should call
redraw() and let draw() do the work. Don't call any OpenGL drawing functions from inside handle()!

You can call some OpenGL stuff like hit detection and texture loading functions by doing:

 case FL_PUSH:
 make_current(); // make OpenGL context current
 if (!valid()) {
 ... set up projection exactly the same as draw ...
 valid(1); // stop it from doing this next time
 }
 ... ok to call NON−DRAWING OpenGL code here, such as hit
 detection, loading textures, etc...

Your main program can now create one of your windows by doing new MyWindow(...). You can also
use FLUID by:

Putting your class definition in a MyWindow.H file. 1.
Creating a Fl_Box widget in FLUID.2.
In the widget panel fill in the "class" field with MyWindow. This will make FLUID produce
constructors for your new class.

3.

In the "Extra Code" field put #include "MyWindow.H", so that the FLUID output file will
compile.

4.

You must put glwindow−>show() in your main code after calling show() on the window containing the
OpenGL window.

Using OpenGL in Normal FLTK Windows

You can put OpenGL code into an Fl_Widget::draw() method or into the code for a boxtype or other
places with some care.

Most importantly, before you show any windows (including those that don't have OpenGL drawing) you
must initialize FLTK so that it knows it is going to use OpenGL. You may use any of the symbols described

FLTK 1.0.11 Programming Manual

Using OpenGL in Normal FLTK Windows 87

for Fl_Gl_Window::mode() to describe how you intend to use OpenGL:

Fl::gl_visual(FL_RGB);

You can then put OpenGL drawing code anywhere you can draw normally by surrounding it with:

gl_start();
... put your OpenGL code here ...
gl_finish();

gl_start() and gl_finish() set up an OpenGL context with an orthographic projection so that 0,0 is
the lower−left corner of the window and each pixel is one unit. The current clipping is reproduced with
OpenGL glScissor() commands. These also synchronize the OpenGL graphics stream with the drawing
done by other X, WIN32, or FLTK functions.

The same context is reused each time. If your code changes the projection transformation or anything else
you should use glPushMatrix() and glPopMatrix() functions to put the state back before calling
gl_finish().

You may want to use Fl_Window::current()−>h() to get the drawable height so that you can flip the
Y coordinates.

Unfortunately, there are a bunch of limitations you must adhere to for maximum portability:

You must choose a default visual with Fl::gl_visual(). •
You cannot pass FL_DOUBLE to Fl::gl_visual().•
You cannot use Fl_Double_Window or Fl_Overlay_Window.•

Do not call gl_start() or gl_finish() when drawing into an Fl_Gl_Window!

OpenGL Drawing Functions

FLTK provides some useful OpenGL drawing functions. They can be freely mixed with any OpenGL calls,
and are defined by including <FL/gl.H> (which you should include instead of the OpenGL header
<GL/gl.h>).

void gl_color(Fl_Color)

Set the current color to a FLTK color. For color−index modes it will use fl_xpixel(c), which is only
right if this window uses the default colormap!

void gl_rect(int x, int y, int w, int h)
void gl_rectf(int x, int y, int w, int h)

Outline or fill a rectangle with the current color. If Fl_Gl_Window::ortho() has been called, then the
rectangle will exactly fill the pixel rectangle passed.

void gl_font(Fl_Font fontid, int size)

Set the current OpenGL font to the same font you get by calling fl_font().

FLTK 1.0.11 Programming Manual

88 OpenGL Drawing Functions

int gl_height()
int gl_descent()
float gl_width(const char *)
float gl_width(const char *, int n)
float gl_width(uchar)

Return information about the current OpenGL font.

void gl_draw(const char *)
void gl_draw(const char *, int n)

Draw a nul−terminated string or an array of n characters in the current OpenGL font at the current raster
position.

void gl_draw(const char *, int x, int y)
void gl_draw(const char *, int n, int x, int y)
void gl_draw(const char *, float x, float y)
void gl_draw(const char *, int n, float x, float y)

Draw a nul−terminated string or an array of n characters in the current OpenGL font at the given position.

void gl_draw(const char *, int x, int y, int w, int h, Fl_Align)

Draw a string formatted into a box, with newlines and tabs expanded, other control characters changed to ^X,
and aligned with the edges or center. Exactly the same output as fl_draw() .

Speeding up OpenGL

Performance of Fl_Gl_Window may be improved on some types of OpenGL implementations (in particular
MESA or other software emulators) by setting the GL_SWAP_TYPE environment variable. This variable
declares what is in the back buffer after you do a swapbuffers.

setenv GL_SWAP_TYPE COPY•

This indicates that the back buffer is copied to the front buffer, and still contains it's old data. This is
true of many hardware implementations. Setting this will speed up emulation of overlays, and
widgets that can do partial update can take advantage of this as damage() will not be cleared to −1.

setenv GL_SWAP_TYPE NODAMAGE•

This indicates that nothing changes the back buffer except drawing into it. This is true of MESA and
Win32 software emulation and perhaps some hardware emulation on systems with lots of memory.

All other values for GL_SWAP_TYPE, and not setting the variable, cause fltk to assumme that the
back buffer must be completely redrawn after a swap.

•

This is easily tested by running the gl_overlay demo program and seeing if the display is correct when you
drag another window over it or if you drag the window off the screen and back on. You have to exit and run
the program again for it to see any changes to the environment variable.

FLTK 1.0.11 Programming Manual

OpenGL Drawing Functions 89

Using OpenGL Optimizer with FLTK

OpenGL Optimizer is a scene graph toolkit for OpenGL available from Silicon Graphics for IRIX and
Microsoft Windows. Versions are in the works for Solaris and HP−UX. It allows you to view large scenes
without writing a lot of OpenGL code.

OptimizerWindow Class Definition

To use OpenGL Optimizer with FLTK you'll need to create a subclass of Fl_Gl_Widget that includes
several state variables:

class OptimizerWindow : public Fl_Gl_Window {
 csContext *context_; // Initialized to 0 and set by draw()...
 csDrawAction *draw_action_; // Draw action...
 csGroup *scene_; // Scene to draw...
 csCamara *camera_; // Viewport for scene...

 void draw();

public:
 OptimizerWindow(int X, int Y, int W, int H, const char *L)
 : Fl_Gl_Window(X, Y, W, H, L) {
 context_ = (csContext *)0;
 draw_action_ = (csDrawAction *)0;
 scene_ = (csGroup *)0;
 camera_ = (csCamera *)0;
 }

 void scene(csGroup *g) { scene_ = g; redraw(); }

 void camera(csCamera *c) {
 camera_ = c;
 if (context_) {
 draw_action_−>setCamera(camera_);
 camera_−>draw(draw_action_);
 redraw();
 }
 }
};

The camera() Method

The camera() method sets the camera (projection and viewpoint) to use when drawing the scene. The
scene is redrawn after this call.

The draw() Method

The draw() method performs the needed initialization and does the actual drawing:

void OptimizerWindow::draw() {
 if (!context_) {
 // This is the first time we've been asked to draw; create the
 // Optimizer context for the scene...

#ifdef WIN32
 context_ = new csContext((HDC)fl_getHDC());
 context_−>ref();

FLTK 1.0.11 Programming Manual

90 Using OpenGL Optimizer with FLTK

http://www.sgi.com/software/optimizer

 context_−>makeCurrent((HDC)fl_getHDC());
#else
 context_ = new csContext(fl_display, fl_visual);
 context_−>ref();
 context_−>makeCurrent(fl_display, fl_window);
#endif // WIN32

 ... perform other context setup as desired ...

 // Then create the draw action to handle drawing things...

 draw_action_ = new csDrawAction;
 if (camera_) {
 draw_action_−>setCamera(camera_);
 camera_−>draw(draw_action_);
 }
 } else {
#ifdef WIN32
 context_−>makeCurrent((HDC)fl_getHDC());
#else
 context_−>makeCurrent(fl_display, fl_window);
#endif // WIN32
 }

 if (!valid()) {
 // Update the viewport for this context...
 context_−>setViewport(0, 0, w(), h());
 }

 // Clear the window...

 context_−>clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,
 0.0f, // Red
 0.0f, // Green
 0.0f, // Blue
 1.0f); // Alpha

 // Then draw the scene (if any)...

 if (scene_)
 draw_action_−>apply(scene_);
}

The scene() Method

The scene() method sets the scene to be drawn. The scene is a collection of 3D objects in a csGroup.
The scene is redrawn after this call.

FLTK 1.0.11 Programming Manual

Using OpenGL Optimizer with FLTK 91

FLTK 1.0.11 Programming Manual

92 Using OpenGL Optimizer with FLTK

A − Widget Reference

This appendix describes all of the widget classes in FLTK. For a description of the fl_ functions and
Fl:: methods, see Appendix B.

Alphabetical List of Classes

Fl_Adjuster
Fl_Box
Fl_Browser
Fl_Browser_
Fl_Button
Fl_Chart
Fl_Check_Button
Fl_Choice
Fl_Clock
Fl_Color_Chooser
Fl_Counter
Fl_Dial
Fl_Double_Window
Fl_End
Fl_Float_Input
Fl_Free
Fl_Gl_Window
Fl_Group

Fl_Hold_Browser
Fl_Input
Fl_Input_
Fl_Int_Input
Fl_Light_Button
Fl_Menu_
Fl_Menu_Bar
Fl_Menu_Button
Fl_Menu_Item
Fl_Menu_Window
Fl_Multi_Browser
Fl_Multiline_Input
Fl_Multiline_Output
Fl_Output
Fl_Overlay_Window
Fl_Pack
Fl_Positioner
Fl_Repeat_Button

Fl_Return_Button
Fl_Roller
Fl_Round_Button
Fl_Scroll
Fl_Scrollbar
Fl_Secret_Input
Fl_Select_Browser
Fl_Single_Window
Fl_Slider
Fl_Tabs
Fl_Tile
Fl_Timer
Fl_Valuator
Fl_Value_Input
Fl_Value_Output
Fl_Value_Slider
Fl_Widget
Fl_Window

A − Widget Reference 93

Class Hierarchy

Fl_End•
Fl_Menu_Item•
Fl_Widget

Fl_Box♦
Fl_Browser_

Fl_Browser
Fl_Hold_Browser⋅
Fl_Multi_Browser⋅
Fl_Select_Browser⋅

◊
♦

Fl_Button
Fl_Check_Button◊
Fl_Light_Button◊
Fl_Repeat_Button◊
Fl_Return_Button◊
Fl_Round_Button◊

♦

Fl_Chart♦
Fl_Clock♦
Fl_Free♦
Fl_Group

Fl_Color_Chooser◊
Fl_Pack◊
Fl_Scroll◊
Fl_Tabs◊
Fl_Tile◊
Fl_Window

Fl_Double_Window⋅
Fl_Gl_Window⋅
Fl_Menu_Window⋅
Fl_Overlay_Window⋅
Fl_Single_Window⋅

◊

♦

Fl_Input_
Fl_Input

Fl_Float_Input⋅
Fl_Int_Input⋅
Fl_Multiline_Input⋅
Fl_Secret_Input⋅

◊

Fl_Output
Fl_Multiline_Output⋅

◊

♦

Fl_Menu_
Fl_Choice◊
Fl_Menu_Bar◊
Fl_Menu_Button◊

♦

Fl_Positioner♦
Fl_Timer♦
Fl_Valuator

Fl_Adjuster◊
Fl_Counter◊
Fl_Dial◊

♦

•

FLTK 1.0.11 Programming Manual

94 Class Hierarchy

Fl_Roller◊
Fl_Slider

Fl_Scrollbar⋅
Fl_Value_Slider⋅

◊

Fl_Value_Input◊
Fl_Value_Output◊

FLTK 1.0.11 Programming Manual

Class Hierarchy 95

class Fl_Adjuster

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Adjuster

Include Files

#include <FL/Fl_Adjuster.H>

Description

The Fl_Adjuster widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range.

When you press a button and drag to the right the value increases. When you drag to the left it decreases. The
largest button adjusts by 100 * step(), the next by 10 * step() and that smallest button by
step(). Clicking on the buttons increments by 10 times the amount dragging by a pixel does. Shift + click
decrements by 10 times the amount.

Methods

Fl_Adjuster•
~Fl_Adjuster•
soft•

Fl_Adjuster::Fl_Adjuster(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Adjuster widget using the given position, size, and label string. It looks best if one of
the dimensions is 3 times the other.

virtual Fl_Adjuster::~Fl_Adjuster()

Destroys the valuator.

uchar Fl_Adjuster::soft() const
void Fl_Adjuster::soft(uchar)

If "soft" is turned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is one.

FLTK 1.0.11 Programming Manual

96 class Fl_Adjuster

class Fl_Box

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Box

Include Files

#include <FL/Fl_Box.H>

Description

This widget simply draws its box, and possibly it's label. Putting it before some other widgets and making it
big enough to surround them will let you draw a frame around them.

Methods

Fl_Box•
~Fl_Box•

Fl_Box::Fl_Box(int x, int y, int w, int h, const char * = 0)
Fl_Box::Fl_Box(Fl_Boxtype b, int x, int y, int w, int h, const char *)

The first constructor sets box() to FL_NO_BOX, which means it is invisible. However such widgets are
useful as placeholders or Fl_Group::resizable() values. To change the box to something visible, use
box(n).

The second form of the constructor sets the box to the specified box type.

Fl_Box::~Fl_Box(void)

The destructor removes the box.

FLTK 1.0.11 Programming Manual

class Fl_Box 97

class Fl_Browser

Class Hierarchy

Fl_Browser_
 |
 +−−−−Fl_Browser
 |
 +−−−− Fl_Hold_Browser, Fl_Multi_Browser, Fl_Select_Browser

Include Files

#include <FL/Fl_Browser.H>

Description

The Fl_Browser widget displays a scrolling list of text lines, and manages all the storage for the text. This
is not a text editor or spreadsheet! But it is useful for showing a vertical list of named objects to the user.

Each line in the browser is identified by number. The numbers start at one (this is so that zero can be
reserved for "no line" in the selective browsers). Unless otherwise noted, the methods do not check to see if
the passed line number is in range and legal. It must always be greater than zero and <= size().

Each line contains a null−terminated string of text and a void * data pointer. The text string is displayed,
the void * pointer can be used by the callbacks to reference the object the text describes.

The base class does nothing when the user clicks on it. The subclasses Fl_Select_Browser,
Fl_Hold_Browser, and Fl_Multi_Browser react to user clicks to select lines in the browser and do
callbacks.

The base class called Fl_Browser_ provides the scrolling and selection mechanisms of this and all the
subclasses, but the dimensions and appearance of each item are determined by the subclass. You can use
Fl_Browser_ to display information other than text, or text that is dynamically produced from your own
data structures. If you find that loading the browser is a lot of work or is inefficient, you may want to make a
subclass of Fl_Browser_.

Methods

Fl_Browser•
~Fl_Browser•
add•
bottomline•
clear•

column_char•
column_widths•
data•
format_char•

hide•
insert•
load•
middleline•

move•
position•
remove•
show•

size•
text•
topline•
visible•

Fl_Browser::Fl_Browser(int, int, int, int, const char * = 0)

The constructor makes an empty browser.

FLTK 1.0.11 Programming Manual

98 class Fl_Browser

Fl_Browser::~Fl_Browser(void)

The destructor deletes all list items and destroys the browser.

void Fl_Browser::add(const char *, void * = 0)

Add a new line to the end of the browser. The text is copied using the strdup() function. It may also be
NULL to make a blank line. The void * argument is returned as the data() of the new item.

void Fl_Browser::bottomline(int n)

Scrolls the browser so the bottom line in the browser is n.

void Fl_Browser::clear()

Remove all the lines in the browser.

uchar Fl_Browser::column_char() const
void Fl_Browser::column_char(char c)

The first form gets the current column separator character. By default this is '\t' (tab).

The second form sets the column separator to c. This will only have an effect if you also set
column_widths().

const int *Fl_Browser::column_widths() const
void Fl_Browser::column_widths(const int *w)

The first form gets the current column width array. This array is zero−terminated and specifies the widths in
pixels of each column. The text is split at each column_char() and each part is formatted into it's own
column. After the last column any remaining text is formatted into the space between the last column and the
right edge of the browser, even if the text contains instances of column_char() . The default value is a
one−element array of just a zero, which makes there are no columns.

The second form sets the current array to w. Make sure the last entry is zero.

void *Fl_Browser::data(int n) const
void Fl_Browser::data(int n, void *)

The first form returns the data for line n. If n is out of range this returns NULL.

The second form sets the data for line n.

uchar Fl_Browser::format_char() const
void Fl_Browser::format_char(char c)

The first form gets the current format code prefix character, which by default is @. A string of formatting
codes at the start of each column are stripped off and used to modify how the rest of the line is printed:

@. Print rest of line, don't look for more '@' signs •
@@ Print rest of line starting with '@' •

FLTK 1.0.11 Programming Manual

class Fl_Browser 99

@l Use a large (24 point) font •

@m Use a medium large (18 point) font •

@s Use a small (11 point) font •
@b Use a bold font (adds FL_BOLD to font) •
@i Use an italic font (adds FL_ITALIC to font) •
@f or @t Use a fixed−pitch font (sets font to FL_COURIER) •
@c Center the line horizontally •
@r Right−justify the text •
@B0, @B1, ... @B255 Fill the backgound with fl_color(n) •
@C0, @C1, ... @C255 Use fl_color(n) to draw the text •
@F0, @F1, ... Use fl_font(n) to draw the text •
@S1, @S2, ... Use point size n to draw the text •
@u or @_ Underline the text. •
@− draw an engraved line through the middle. •

Notice that the @. command can be used to reliably terminate the parsing. To print a random string in a
random color, use sprintf("@C%d@.%s", color, string) and it will work even if the string starts
with a digit or has the format character in it.

The second form sets the current prefix to c. Set the prefix to 0 to disable formatting.

void Fl_Browser::hide(int n)

Makes line n invisible, preventing selection by the user. The line can still be selected under program control.

void Fl_Browser::insert(int n, const char *, void * = 0)

Insert a new line before line n. If n > size() then the line is added to the end.

int Fl_Browser::load(const char *filename)

Clears the browser and reads the file, adding each line from the file to the browser. If the filename is NULL or
a zero−length string then this just clears the browser. This returns zero if there was any error in opening or
reading the file, in which case errno is set to the system error. The data() of each line is set to NULL.

void Fl_Browser::middleline(int n)

Scrolls the browser so the middle line in the browser is n.

void Fl_Browser::move(int to, int from)

Line from is removed and reinserted at to; to is calculated after the line is removed.

int Fl_Browser::position() const
void Fl_Browser::position(int p)

The first form returns the current vertical scrollbar position, where 0 corresponds to the top. If there is not
vertical scrollbar then this will always return 0.

The second form sets the vertical scrollbar position to p.

FLTK 1.0.11 Programming Manual

100 class Fl_Browser

void Fl_Browser::remove(int n)

Remove line n and make the browser one line shorter.

void Fl_Browser::show(int n)

Makes line n visible for selection.

int Fl_Browser::size() const

Returns how many lines are in the browser. The last line number is equal to this.

const char *Fl_Browser::text(int n) const
void Fl_Browser::text(int n, const char *)

The first form returns the text for line n. If n is out of range it returns NULL.

The second form sets the text for line n.

int Fl_Browser::topline() const
void Fl_Browser::topline(int n)

The first form returns the current top line in the browser. If there is no vertical scrollbar then this will always
return 1.

The second form scrolls the browser so the top line in the browser is n.

int Fl_Browser::visible(int n) const

Returns a non−zero value if line n is visible.

FLTK 1.0.11 Programming Manual

class Fl_Browser 101

class Fl_Browser_

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Browser_
 |
 +−−−− Fl_Browser

Include Files

#include <FL/Fl_Browser_.H>

Description

This is the base class for browsers. To be useful it must be subclassed and several virtual functions defined.
The Forms−compatable browser and the file chooser's browser are subclassed off of this.

This has been designed so that the subclass has complete control over the storage of the data, although
because next() and prev() functions are used to index, it works best as a linked list or as a large block of
characters in which the line breaks must be searched for.

A great deal of work has been done so that the "height" of a data object does not need to be determined until
it is drawn. This is useful if actually figuring out the size of an object requires accessing image data or doing
stat() on a file or doing some other slow operation.

Methods

Fl_Browser_•
~Fl_Browser_•
bbox•
deleting•
deselect•
display•
displayed•
draw•
find_item•

full_height•
full_width•
handle•
has_scrollbar•
hposition•
incr_height•
inserting•
item_draw•

item_first•
item_height•
item_next•
item_prev•
item_quick_height•
item_select•
item_selected•
item_width•

leftedge•
new_list•
position•
redraw_line•
redraw_lines•
replacing•
resize•
scrollbar_left•

scrollbar_right•
select•
select_only•
selection•
textcolor•
textfont•
textsize•
top•

Fl_Browser::Fl_Browser(int, int, int, int, const char * = 0)

The constructor makes an empty browser.

Fl_Browser::~Fl_Browser(void)

The destructor deletes all list items and destroys the browser.

FLTK 1.0.11 Programming Manual

102 class Fl_Browser_

Fl_Browser_::bbox(int &x, int &y, int &w, int &h) const

This method returns the bounding box for the interior of the list, inside the scrollbars.

Fl_Browser_::deleting(void *a)

This method should be used when an item is deleted from the list. It allows the Fl_Browser_ to discard
any cached data it has on the item.

int Fl_Browser_::deselect(int docb=0)

Deselects all items in the list and returns 1 if the state changed or 0 if it did not.

If docb is non−zero, deselect tries to call the callback function for the widget.

Fl_Browser_::display(void *p)

Displays item p, scrolling the list as necessary.

int Fl_Browser_::displayed(void *p) const

This method returns non−zero if item p is currently visible in the list.

Fl_Browser_::draw()
Fl_Browser_::draw(int x, int y, int w, int h)

The first form draws the list within the normal widget bounding box.

The second form draws the contents of the browser within the specified bounding box.

void *Fl_Browser_::find_item(int my)

This method returns the item under mouse at my. If no item is displayed at that position then NULL is
returned.

virtual int Fl_Browser_::full_height()

This method may be provided by the subclass to indicate the full height of the item list in pixels. The default
implementation computes the full height from the item heights.

Fl_Browser_::full_width()

This method may be provided by the subclass to indicate the full width of the item list in pixels. The default
implementation computes the full width from the item widths.

Fl_Browser_::handle(int event)
Fl_Browser_::handle(int event, int x, int y, int w, int h)

The first form handles an event within the normal widget bounding box.

The second form handles an event within the specified bounding box.

FLTK 1.0.11 Programming Manual

class Fl_Browser_ 103

void Fl_Browser_::has_scrollbar(int h)

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the widget.
has_scrollbar() changes this based on the value of h:

0 − No scrollbars. •
Fl_Browser_::HORIZONTAL − Only a horizontal scrollbar. •
Fl_Browser_::VERTICAL − Only a vertical scrollbar. •
Fl_Browser_::BOTH − The default is both scrollbars. •
Fl_Browser_::HORIZONTAL_ALWAYS − Horizontal scrollbar always on, vertical always off. •
Fl_Browser_::VERTICAL_ALWAYS − Vertical scrollbar always on, horizontal always off. •
Fl_Browser_::BOTH_ALWAYS − Both always on. •

int Fl_Browser_::hposition() const
Fl_Browser_::hposition(int h)

Gets or sets the horizontal scrolling position of the list.

virtual int Fl_Browser_::incr_height()

This method may be provided to return the average height of all items, to be used for scrolling. The default
implementation uses the height of the first item.

Fl_Browser_::inserting(void *a, void *b)

This method should be used when an item is added to the list. It allows the Fl_Browser_ to update its
cache data as needed.

virtual void Fl_Browser_::item_draw(void *p, int x, int y, int w, int h)

This method must be provided by the subclass to draw the item p in the area indicated by x, y, w, and h.

virtual void *Fl_Browser_::item_first() const

This method must be provided by the subclass to return the first item in the list.

virtual int Fl_Browser_::item_height(void *p)

This method must be provided by the subclass to return the height of the item p in pixels. Allow for two
additional pixels for the list selection box.

virtual void *Fl_Browser_::item_next(void *p) const

This method must be provided by the subclass to return the item in the list after p.

virtual void *Fl_Browser_::item_prev(void *p) const

This method must be provided by the subclass to return the item in the list before p.

FLTK 1.0.11 Programming Manual

104 class Fl_Browser_

virtual int Fl_Browser_::item_quick_height(void *p)

This method may be provided by the subclass to return the height of the item p in pixels. Allow for two
additional pixels for the list selection box. This method differs from item_height in that it is only called
for selection and scrolling operations. The default implementation calls item_height.

virtual void Fl_Browser_::item_select(void *p, int s=1)

This method must be implemented by the subclass if it supports multiple selections in the browser. The
s argument specifies the selection state for item p: 0 = off, 1 = on.

virtual int Fl_Browser_::item_selected(void *p) const

This method must be implemented by the subclass if it supports multiple selections in the browser. The
method should return 1 if p is selected and 0 otherwise.

virtual int Fl_Browser_::item_width(void *p)

This method must be provided by the subclass to return the width of the item p in pixels. Allow for two
additional pixels for the list selection box.

int Fl_Browser_::leftedge() const

This method returns the X position of the left edge of the list area after adjusting for the scrollbar and border,
if any.

Fl_Browser_::new_list()

This method should be called when the list data is completely replaced or cleared. It informs the
Fl_Browser_ widget that any cached information it has concerning the items is invalid.

int Fl_Browser_::position() const
Fl_Browser_::position(int v) const

Gets or sets the vertical scrolling position of the list.

Fl_Browser_::redraw_line(void *p)

This method should be called when the contents of an item have changed but not changed the height of the
item.

Fl_Browser_::redraw_lines()

This method will cause the entire list to be redrawn.

Fl_Browser_::replacing(void *a, void *b)

This method should be used when an item is replaced in the list. It allows the Fl_Browser_ to update its
cache data as needed.

FLTK 1.0.11 Programming Manual

class Fl_Browser_ 105

Fl_Browser_::resize(int x, int y, int w, int h)

Repositions and/or resizes the browser.

Fl_Browser_::scrollbar_left()

This method moves the vertical scrollbar to the lefthand side of the list.

Fl_Browser_::scrollbar_right()

This method moves the vertical scrollbar to the righthand side of the list.

int Fl_Browser_::select(void *p, int s=1, int docb=0)

Sets the selection state of item p to s and returns 1 if the state changed or 0 if it did not.

If docb is non−zero, select tries to call the callback function for the widget.

Fl_Browser_::select_only(void *p, int docb=0)

Selects item p and returns 1 if the state changed or 0 if it did not. Any other items in the list are deselected.

If docb is non−zero, select_only tries to call the callback function for the widget.

void *Fl_Browser_::selection() const

Returns the item currently selected, or NULL if there is no selection. For multiple selection browsers this call
returns the last item that was selected.

Fl_Color Fl_Browser_::textcolor() const
void Fl_Browser_::textcolor(Fl_Color color)

The first form gets the default text color for the lines in the browser.

The second form sets the default text color to color

Fl_Font Fl_Browser_::textfont() const
void Fl_Browser_::textfont(Fl_Font font)

The first form gets the default text font for the lines in the browser.

The second form sets the default text font to font

uchar Fl_Browser_::textsize() const
void Fl_Browser_::textsize(uchar size)

The first form gets the default text size for the lines in the browser.

The second form sets the default text size to size

FLTK 1.0.11 Programming Manual

106 class Fl_Browser_

void *Fl_Browser_::top() const

Returns the item the appears at the top of the list.

FLTK 1.0.11 Programming Manual

class Fl_Browser_ 107

class Fl_Button

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Button
 |
 +−−−− Fl_Check_Button, Fl_Light_Button, Fl_Repeat_Button,

Fl_Return_Button, Fl_Round_Button

Include Files

#include <FL/Fl_Button.H>

Description

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

Buttons can also generate callbacks in response to FL_SHORTCUT events. The button can either have an
explicit shortcut() value or a letter shortcut can be indicated in the label() with an '&' character before
it. For the label shortcut it does not matter if Alt is held down, but if you have an input field in the same
window, the user will have to hold down the Alt key so that the input field does not eat the event first as an
FL_KEYBOARD event.

Methods

Fl_Button•
~Fl_Button•

clear•
down_box•

set•
setonly•

shortcut•
type•

value•
when•

Fl_Button::Fl_Button(int x, int y, int w, int h, const char *label = 0)

The constructor creates the button using the position, size, and label.

Fl_Button::~Fl_Button(void)

The destructor removed the button.

int Fl_Button::clear()

Same as value(0).

Fl_Boxtype Fl_Button::down_box() const
void Fl_Button::down_box(Fl_Boxtype bt)

The first form returns the current down box type, which is drawn when value() is non−zero.

FLTK 1.0.11 Programming Manual

108 class Fl_Button

The second form sets the down box type. The default value of 0 causes FLTK to figure out the correct
matching down version of box() .

int Fl_Button::set()

Same as value(1).

void Fl_Button::setonly()

Turns on this button and turns off all other radio buttons in the group (calling value(1) or set() does not
do this).

ulong Fl_Button::shortcut() const
void Fl_Button::shortcut(ulong key)

The first form returns the current shortcut key for the button.

The second form sets the shortcut key to key. Setting this overrides the use of '&' in the label(). The
value is a bitwise OR of a key and a set of shift flags, for example FL_ALT | 'a' , FL_ALT | (FL_F
+ 10), or just 'a'. A value of 0 disables the shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a
lower−case letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key
must be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don't care" setting).

uchar Fl_Button::type() const
void Fl_Button::type(uchar t)

The first form of type() returns the current button type, which can be one of:

0: The value is unchanged. •
FL_TOGGLE_BUTTON: The value is inverted. •
FL_RADIO_BUTTON: The value is set to 1, and all other buttons in the current group with type()
== FL_RADIO_BUTTON are set to zero.

•

The second form sets the button type to t.

char Fl_Button::value() const
int Fl_Button::value(int)

The first form returns the current value (0 or 1). The second form sets the current value.

Fl_When Fl_Widget::when() const
void Fl_Widget::when(Fl_When w)

Controls when callbacks are done. The following values are useful, the default value is
FL_WHEN_RELEASE:

0: The callback is not done, instead changed() is turned on. •

FLTK 1.0.11 Programming Manual

class Fl_Button 109

FL_WHEN_RELEASE: The callback is done after the user successfully clicks the button, or when a
shortcut is typed.

•

FL_WHEN_CHANGED : The callback is done each time the value() changes (when the user pushes
and releases the button, and as the mouse is dragged around in and out of the button).

•

FLTK 1.0.11 Programming Manual

110 class Fl_Button

class Fl_Chart

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Chart

Include Files

#include <FL/Fl_Chart.H>

Description

This widget displays simple charts and is provided for Forms compatibility.

Methods

Fl_Chart•
~Fl_Chart•
add•

autosize•
bounds•

clear•
insert•

maxsize•
replace•

size•
type•

Fl_Chart::Fl_Chart(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Chart widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Chart::~Fl_Chart()

Destroys the Fl_Chart widget and all of its data.

void add(double value, const char *label = NULL, uchar color = 0)

The add method adds the value and optionally label and color to the chart.

FLTK 1.0.11 Programming Manual

class Fl_Chart 111

uchar autosize(void) const
void autosize(uchar onoff)

The autosize method controls whether or not the chart will automatically adjust the bounds of the chart.
The first form returns a boolean value that is non−zero if auto−sizing is enabled and zero is auto−sizing is
disabled.

The second form of autosize sets the auto−sizing property to onoff.

void bounds(double *a, double *b)
void bounds(double a, double b)

The bounds method gets or sets the lower and upper bounds of the chart values to a and b respectively.

void clear(void)

The clear method removes all values from the chart.

void insert(int pos, double value, const char *label = NULL, uchar color = 0)

The insert method inserts a data value at the given position pos. Position 0 is the first data value.

int maxsize(void) const
void maxsize(int n)

The maxsize method gets or sets the maximum number of data values for a chart. If you do not call this
method then the chart will be allowed to grow to any size depending on available memory.

void replace(int pos, double value, const char *label = NULL, uchar color = 0)

The replace method replaces data value pos with value, label, and color. Position 0 is the first data
value.

int size(void) const

The size method returns the number of data values in the chart.

uchar type() const
void type(uchar t)

The first form of type() returns the current chart type. The chart type can be one of the following:

FL_BAR_CHART
Each sample value is drawn as a vertical bar.

FL_FILLED_CHART
The chart is filled from the bottom of the graph to the sample values.

FL_HORBAR_CHART
Each sample value is drawn as a horizontal bar.

FL_LINE_CHART
The chart is drawn as a polyline with vertices at each sample value.

FL_PIE_CHART

FLTK 1.0.11 Programming Manual

112 class Fl_Chart

A pie chart is drawn with each sample value being drawn as a proportionate slice in the circle.
FL_SPECIALPIE_CHART

Like FL_PIE_CHART, but the first slice is separated from the pie.
FL_SPIKE_CHART

Each sample value is drawn as a vertical line.
The second form of type() sets the chart type to t.

FLTK 1.0.11 Programming Manual

class Fl_Chart 113

class Fl_Check_Button

Class Hierarchy

Fl_Button
 |
 +−−−−Fl_Check_Button

Include Files

#include <FL/Fl_Check_Button.H>

Description

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

The Fl_Check_Button subclass display the "on" state by turning on a light, rather than drawing pushed
in. The shape of the "light" is initially set to FL_DIAMOND_DOWN_BOX. The color of the light when on
is controlled with selection_color(), which defaults to FL_RED.

Methods

Fl_Check_Button•
~Fl_Check_Button•

Fl_Check_Button::Fl_Check_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Check_Button widget using the given position, size, and label string.

Fl_Check_Button::~Fl_Check_Button()

The destructor deletes the check button.

FLTK 1.0.11 Programming Manual

114 class Fl_Check_Button

class Fl_Choice

Class Hierarchy

Fl_Menu_
 |
 +−−−−Fl_Choice

Include Files

#include <FL/Fl_Choice.H>

Description

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of
Fl_Menu_Item objects. Motif calls this an OptionButton.

The only difference between this and a Fl_Menu_Button is that the name of the most recent chosen menu
item is displayed inside the box, while the label is displayed outside the box. However, since the use of this is
most often to control a single variable rather than do individual callbacks, some of the
Fl_Menu_Button methods are redescribed here in those terms.

When the user picks an item off the menu the value() is set to that item and then the callback is done.

All three mouse buttons pop up the menu. The Forms behavior of the first two buttons to
increment/decrement the choice is not implemented. This could be added with a subclass, however.

The menu will also pop up in response to shortcuts indicated by putting a '&' character in the label(). See
Fl_Button for a description of this.

Typing the shortcut() of any of the items will do exactly the same as when you pick the item with the
mouse. The '&' character in item names are only looked at when the menu is popped up, however.

Methods

Fl_Choice•
~Fl_Choice•
clear_changed•
changed•
down_box•
set_changed•
value•

Fl_Choice::Fl_Choice(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Choice widget using the given position, size, and label string. The default boxtype is
FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

FLTK 1.0.11 Programming Manual

class Fl_Choice 115

virtual Fl_Choice::~Fl_Choice()

The destructor removes the Fl_Choice widget and all of its menu items.

int Fl_Choice::value() const
int Fl_Choice::value(int)
int Fl_Choice::value(const Fl_Menu *)

The value is the index into the Fl_Menu array of the last item chosen by the user. It is zero initially. You can
set it as an integer, or set it with a pointer to a menu item. The set routines return non−zero if the new value is
different than the old one. Changing it causes a redraw().

int Fl_Widget::changed() const

This value is true if the user picks a different value. It is turned off by value() and just before doing a
callback (the callback can turn it back on if desired).

void Fl_Widget::set_changed()

This method sets the changed() flag.

void Fl_Widget::clear_changed()

This method clears the changed() flag.

Fl_Boxtype Fl_Choice::down_box() const
void Fl_Choice::down_box(Fl_Boxtype b)

The first form gets the current down box, which is used when the menu is popped up. The default down box
type is FL_DOWN_BOX The second form sets the current down box type to b.

FLTK 1.0.11 Programming Manual

116 class Fl_Choice

class Fl_Clock

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Clock

Include Files

#include <FL/Fl_Clock.H>

Description

This widget provides a round analog clock display and is provided for Forms compatibility. It installs a
1−second timeout callback using Fl::add_timeout().

Methods

Fl_Clock•
~Fl_Clock•
hour•
minute•
second•
value•

Fl_Clock::Fl_Clock(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Clock widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Clock::~Fl_Clock()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Clock and all of it's
children can be automatic (local) variables, but you must declare the Fl_Clockfirst, so that it is destroyed
last.

int Fl_Clock::hour() const

Returns the current hour (0 to 23).

int Fl_Clock::minute() const

Returns the current minute (0 to 59).

FLTK 1.0.11 Programming Manual

class Fl_Clock 117

int Fl_Clock::second() const

Returns the current second (0 to 60, 60 = leap second).

void Fl_Clock::value(ulong v)
void Fl_Clock::value(int h, int m, int s)
ulong Fl_Clock::value(void)

The first two forms of value set the displayed time to the given UNIX time value or specific hours,
minutes, and seconds.

The third form of value returns the displayed time in seconds since the UNIX epoch (January 1, 1970).

FLTK 1.0.11 Programming Manual

118 class Fl_Clock

class Fl_Color_Chooser

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Color_Chooser

Include Files

#include <FL/Fl_Color_Chooser.H>

Description

The Fl_Color_Chooser widget provides a standard RGB color chooser. You can place any number of
these into a panel of your own design. This widget contains the hue box, value slider, and rgb input fields
from the above diagram (it does not have the color chips or the Cancel or OK buttons). The callback is done
every time the user changes the rgb value. It is not done if they move the hue control in a way that produces
the same rgb value, such as when saturation or value is zero.

Methods

Fl_Color_Chooser•
~Fl_Color_Chooser•
add•

Fl_Color_Chooser::Fl_Color_Chooser(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Color_Chooser widget using the given position, size, and label string. The
recommended dimensions are 200x95. The color is initialized to black.

virtual Fl_Color_Chooser::~Fl_Color_Chooser()

The destructor removes the color chooser and all of its controls.

double Fl_Color_Chooser::hue() const

Return the current hue. 0 <= hue < 6. Zero is red, one is yellow, two is green, etc. This value is convienent for
the internal calculations − some other systems consider hue to run from zero to one, or from 0 to 360.

double Fl_Color_Chooser::saturation() const

Returns the saturation. 0 <= saturation <= 1.

double Fl_Color_Chooser::value() const

Returns the value/brightness. 0 <= value <= 1.

FLTK 1.0.11 Programming Manual

class Fl_Color_Chooser 119

double Fl_Color_Chooser::r() const

Returns the current red value. 0 <= r <= 1.

double Fl_Color_Chooser::g() const

Returns the current green value. 0 <= g <= 1.

double Fl_Color_Chooser::b() const

Returns the current blue value. 0 <= b <= 1.

int Fl_Color_Chooser::rgb(double, double, double)

Sets the current rgb color values. Does not do the callback. Does not clamp (but out of range values will
produce psychedelic effects in the hue selector).

int Fl_Color_Chooser::hsv(double,double,double)

Set the hsv values. The passed values are clamped (or for hue, modulus 6 is used) to get legal values. Does
not do the callback.

static void Fl_Color_Chooser::hsv2rgb(double, double, double, double&, double&, double&)

This static method converts HSV colors to RGB colorspace.

static void Fl_Color_Chooser::rgb2hsv(double, double, double, double&, double&, double&)

This static method converts RGB colors to HSV colorspace.

FLTK 1.0.11 Programming Manual

120 class Fl_Color_Chooser

class Fl_Counter

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Counter

Include Files

#include <FL/Fl_Counter.H>

Description

The Fl_Counter widget is provided for forms compatibility. It controls a single floating point value.

Methods

Fl_Counter•
~Fl_Counter•
lstep•
type•

Fl_Counter::Fl_Counter(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Counter widget using the given position, size, and label string. The default type is
FL_NORMAL_COUNTER.

virtual Fl_Counter::~Fl_Counter()

Destroys the valuator.

double Fl_Counter::lstep() const

Set the increment for the double−arrow buttons. The default value is 1.0.

type(uchar)

Sets the type of counter:

FL_NORMAL_COUNTER − Displays a counter with 4 arrow buttons. •
FL_SIMPLE_COUNTER − Displays a counter with only 2 arrow buttons. •

FLTK 1.0.11 Programming Manual

class Fl_Counter 121

class Fl_Dial

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Dial

Include Files

#include <FL/Fl_Dial.H>

Description

The Fl_Dial widget provides a circular dial to control a single floating point value.

Methods

Fl_Dial•
~Fl_Dial•
angle1•
angle2•
angles•
type•

Fl_Dial::Fl_Dial(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Dial widget using the given position, size, and label string. The default type is
FL_NORMAL_DIAL.

virtual Fl_Dial::~Fl_Dial()

Destroys the valuator.

short Fl_Dial::angle1() const;
void Fl_Dial::angle1(short);
short Fl_Dial::angle2() const;
void Fl_Dial::angle2(short);
void Fl_Dial::angles(short a, short b);

Sets the angles used for the minimum and maximum values. The default values are 45 and 315 (0 degrees is
straight down and the angles progress clockwise). Normally angle1 is less than angle2, but if you reverse
them the dial moves counter−clockwise.

type(uchar)

Sets the type of the dial to:

FL_NORMAL_DIAL − Draws a normal dial with a knob. •

FLTK 1.0.11 Programming Manual

122 class Fl_Dial

FL_LINE_DIAL − Draws a dial with a line. •
FL_FILL_DIAL − Draws a dial with a filled arc. •

FLTK 1.0.11 Programming Manual

class Fl_Dial 123

class Fl_Double_Window

Class Hierarchy

Fl_Window
 |
 +−−−−Fl_Double_Window

Include Files

#include <FL/Fl_Double_Window.H>

Description

The Fl_Double_Window class provides a double−buffered window. If possible this will use the X double
buffering extension (Xdbe). If not, it will draw the window data into an off−screen pixmap, and then copy it
to the on−screen window.

It is highly recommended that you put the following code before the first show() of any window in your
program:

Fl::visual(FL_DOUBLE|FL_INDEX)

This makes sure you can use Xdbe on servers where double buffering does not exist for every visual.

Methods

Fl_Double_Window•
~Fl_Double_Window•
pixmap•

Fl_Double_Window::Fl_Double_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Double_Window widget using the given position, size, and label (title) string.

virtual Fl_Double_Window::~Fl_Double_Window()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code.

ulong Fl_Double_Window::pixmap() const

Returns the off−screen pixmap or back buffer. This value is zero until the first time flush() is called.

FLTK 1.0.11 Programming Manual

124 class Fl_Double_Window

class Fl_End

Class Hierarchy

Fl_End

Include Files

#include <FL/Fl_Group.H>

Description

This is a dummy class that allows you to end a Fl_Group in a constructor list of a class:

class MyClass {
 Fl_Group group;
 Fl_Button button_in_group;
 Fl_End end;
 Fl_Button button_outside_group;
 MyClass();
};
MyClass::MyClass() :
 group(10,10,100,100),
 button_in_group(20,20,60,30),
 end(),
 button_outside_group(10,120,60,30)
{}

Methods

Fl_End•

Fl_End::Fl_End

The constructor does Fl_Group::current()−>end().

FLTK 1.0.11 Programming Manual

class Fl_End 125

class Fl_Float_Input

Class Hierarchy

Fl_Input
 |
 +−−−−Fl_Float_Input

Include Files

#include <FL/Fl_Float_Input.H>

Description

The Fl_Float_Input class is a subclass of Fl_Input that only allows the user to type floating point
numbers (sign, digits, decimal point, more digits, 'E' or 'e', sign, digits).

Methods

Fl_Float_Input•
~Fl_Float_Input•

Fl_Float_Input::Fl_Float_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Float_Input widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX.

virtual Fl_Float_Input::~Fl_Float_Input()

Destroys the widget and any value associated with it.

FLTK 1.0.11 Programming Manual

126 class Fl_Float_Input

class Fl_Free

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Free

Include Files

#include <FL/Fl_Free.H>

Description

Emulation of the Forms "free" widget. This emulation allows the free demo to run, and appears to be useful
for porting programs written in Forms which use the free widget or make subclasses of the Forms widgets.

There are five types of free, which determine when the handle function is called:

#define FL_NORMAL_FREE 1
#define FL_SLEEPING_FREE 2
#define FL_INPUT_FREE 3
#define FL_CONTINUOUS_FREE 4
#define FL_ALL_FREE 5

An FL_INPUT_FREE accepts FL_FOCUS events. A FL_CONTINUOUS_FREE sets a timeout callback 100
times a second and provides a FL_STEP event, this has obvious detrimental effects on machine performance.
FL_ALL_FREE does both. FL_SLEEPING_FREE are deactivated.

Methods

Fl_Free•
~Fl_Free•

Fl_Free(uchar type, int, int, int, int, const char*l, FL_HANDLEPTR hdl)

The constructor takes both the type and the handle function. The handle function should be declared as
follows:

int
handle_function(Fl_Widget *w,
 int event,
 float event_x,
 float event_y,
 char key)

This function is called from the the handle() method in response to most events, and is called by the
draw() method. The event argument contains the event type:

// old event names for compatability:
#define FL_MOUSE FL_DRAG

FLTK 1.0.11 Programming Manual

class Fl_Free 127

#define FL_DRAW 0
#define FL_STEP 9
#define FL_FREEMEM 12
#define FL_FREEZE FL_UNMAP
#define FL_THAW FL_MAP

virtual Fl_Free::~Fl_Free()

The destructor will call the handle function with the event FL_FREE_MEM.

FLTK 1.0.11 Programming Manual

128 class Fl_Free

class Fl_Gl_Window

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Gl_Window
 |
 +−−−− Fl_Pack, Fl_Scroll, Fl_Tabs, Fl_Tile, Fl_Window

Include Files

#include <FL/Fl_Gl_Window.H>

Description

The Fl_Gl_Window widget sets things up so OpenGL works, and also keeps an OpenGL "context" for that
window, so that changes to the lighting and projection may be reused between redraws. Fl_Gl_Window also
flushes the OpenGL streams and swaps buffers after draw() returns.

OpenGL hardware typically provides some overlay bit planes, which are very useful for drawing UI controls
atop your 3D graphics. If the overlay hardware is not provided, FLTK tries to simulate the overlay, This
works pretty well if your graphics are double buffered, but not very well for single−buffered.

Methods

Fl_Gl_Window•
~Fl_Gl_Window•
can_do•
can_do_overlay•

context•
draw•
draw_overlay•
handle•

hide•
invalidate•
make_current•

make_overlay_current•
mode•
ortho•

redraw_overlay•
swap_buffers•
valid•

Fl_Gl_Window::Fl_Gl_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Gl_Window widget using the given position, size, and label string. The default boxtype
is FL_NO_BOX. The default mode is FL_RGB|FL_DOUBLE|FL_DEPTH.

virtual Fl_Gl_Window::~Fl_Gl_Window()

The destructor removes the widget and destroys the OpenGL context associated with it.

virtual void Fl_Gl_Window::draw(void)

Fl_Gl_Window::draw() is a pure virtual method. You must subclass Fl_Gl_Window and provide an
implementation for draw(). You may also provide an implementation of draw_overlay() if you want to
draw into the overlay planes. You can avoid reinitializing the viewport and lights and other things by
checking valid() at the start of draw() and only doing the initialization if it is false.

The draw() method can only use OpenGL calls. Do not attempt to call X, any of the functions in
<FL/fl_draw.H>, or glX directly. Do not call gl_start() or gl_finish().

FLTK 1.0.11 Programming Manual

class Fl_Gl_Window 129

If double−buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

const int Fl_Gl_Window::mode() const
int Fl_Gl_Window::mode(int m)

Set or change the OpenGL capabilites of the window. The value can be any of the following OR'd together:

FL_RGB − RGB color (not indexed) •
FL_RGB8 − RGB color with at least 8 bits of each color •
FL_INDEX − Indexed mode •
FL_SINGLE − not double buffered •
FL_DOUBLE − double buffered •
FL_ACCUM − accumulation buffer •
FL_ALPHA − alpha channel in color •
FL_DEPTH − depth buffer •
FL_STENCIL − stencil buffer •
FL_MULTISAMPLE − multisample antialiasing •

FL_RGB and FL_SINGLE have a value of zero, so they are "on" unless you give FL_INDEX or
FL_DOUBLE.

If the desired combination cannot be done, FLTK will try turning off FL_MULTISAMPLE. If this also fails
the show() will call Fl::error() and not show the window.

You can change the mode while the window is displayed. This is most useful for turning double−buffering on
and off. Under X this will cause the old X window to be destroyed and a new one to be created. If this is a
top−level window this will unfortunately also cause the window to blink, raise to the top, and be de−iconized,
and the xid() will change, possibly breaking other code. It is best to make the GL window a child of
another window if you wish to do this!

static int Fl_Gl_Window::can_do(int)
int Fl_Gl_Window::can_do() const

Returns non−zero if the hardware supports the given or current OpenGL mode.

void* Fl_Gl_Window::context() const;
void Fl_Gl_Window::context(void*, int destroy_flag = false);

Return or set a pointer to the GLContext that this window is using. This is a system−dependent structure, but
it is portable to copy the context from one window to another. You can also set it to NULL, which will force
FLTK to recreate the context the next time make_current() is called, this is useful for getting around
bugs in OpenGL implementations.

If destroy_flag is true the context will be destroyed by fltk when the window is destroyed, or when the
mode() is changed, or the next time context(x) is called.

char Fl_Gl_Window::valid() const
void Fl_Gl_Window::valid(char i)

Fl_Gl_Window::valid() is turned off when FLTK creates a new context for this window or when the
window resizes, and is turned on after draw() is called. You can use this inside your draw() method to

FLTK 1.0.11 Programming Manual

130 class Fl_Gl_Window

avoid unneccessarily initializing the OpenGL context. Just do this:

void mywindow::draw() {
 if (!valid()) {
 glViewport(0,0,w(),h());
 glFrustum(...);
 glLight(...);
 ...other initialization...
 }
 ... draw your geometry here ...
}

You can turn valid() on by calling valid(1). You should only do this after fixing the transformation
inside a draw() or after make_current(). This is done automatically after draw() returns.

void Fl_Gl_Window::invalidate()

The invalidate() method turns off valid() and is equivalent to calling value(0).

void Fl_Gl_Window::ortho()

Set the projection so 0,0 is in the lower left of the window and each pixel is 1 unit wide/tall. If you are
drawing 2D images, your draw() method may want to call this if valid() is false.

void Fl_Gl_Window::make_current()

The make_current() method selects the OpenGL context for the widget. It is called automatically prior
to the draw() method being called and can also be used to implement feedback and/or selection within the
handle() method.

void Fl_Gl_Window::make_overlay_current()

The make_overlay_current() method selects the OpenGL context for the widget's overlay. It is called
automatically prior to the draw_overlay() method being called and can also be used to implement
feedback and/or selection within the handle() method.

void Fl_Gl_Window::swap_buffers()

The swap_buffers() method swaps the back and front buffers. It is called automatically after the
draw() method is called.

void Fl_Gl_Window::hide()

Hides the window and destroys the OpenGL context.

int Fl_Gl_Window::can_do_overlay()

Returns true if the hardware overlay is possible. If this is false, FLTK will try to simulate the overlay, with
significant loss of update speed. Calling this will cause FLTK to open the display.

FLTK 1.0.11 Programming Manual

class Fl_Gl_Window 131

void Fl_Gl_Window::redraw_overlay()

This method causes draw_overlay to be called at a later time. Initially the overlay is clear, if you want the
window to display something in the overlay when it first appears, you must call this immediately after you
show() your window.

virtual void Fl_Gl_Window::draw_overlay()

You must implement this virtual function if you want to draw into the overlay. The overlay is cleared before
this is called. You should draw anything that is not clear using OpenGL. You must use gl_color(i) to
choose colors (it allocates them from the colormap using system−specific calls), and remember that you are
in an indexed OpenGL mode and drawing anything other than flat−shaded will probably not work.

Both this function and Fl_Gl_Window::draw() should check Fl_Gl_Window::valid() and set the
same transformation. If you don't your code may not work on other systems. Depending on the OS, and on
whether overlays are real or simulated, the OpenGL context may be the same or different between the overlay
and main window.

FLTK 1.0.11 Programming Manual

132 class Fl_Gl_Window

class Fl_Group

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Group
 |
 +−−−− Fl_Pack, Fl_Scroll, Fl_Tabs, Fl_Tile, Fl_Window

Include Files

#include <FL/Fl_Group.H>

Description

The Fl_Group class is the FLTK container widget. It maintains an array of child widgets. These children
can themselves be any widget including Fl_Group. The most important subclass of Fl_Group is
Fl_Window, however groups can also be used to control radio buttons or to enforce resize behavior.

Methods

Fl_Group•
~Fl_Group•
add•

add_resizable•
array•
begin•

child•
children•
current•

end•
find•
init_sizes•

insert•
remove•
resizable•

Fl_Group::Fl_Group(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Group widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Group::~Fl_Group()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Group and all of it's
children can be automatic (local) variables, but you must declare the Fl_Group first, so that it is destroyed
last.

void Fl_Group::add(Fl_Widget &w)
void Fl_Group::add(Fl_Widget *w)

The widget is removed from it's current group (if any) and then added to the end of this group.

void Fl_Group::init_sizes()

The Fl_Group widget keeps track of the original widget sizes and positions when resizing occurs so that if
you resize a window back to its original size the widgets will be in the correct places. If you rearrange the
widgets in your group, call this method to register the new arrangement with the Fl_Group that contains
them.

FLTK 1.0.11 Programming Manual

class Fl_Group 133

void Fl_Group::insert(Fl_Widget &w, int n)

The widget is removed from it's current group (if any) and then inserted into this group. It is put at index
n (or at the end if n >= children(). This can also be used to rearrange the windgets inside a group.

void Fl_Group::insert(Fl_Widget &w, Fl_Widget* beforethis)

This does insert(w, find(beforethis)). This will append the widget if beforethis is not in
the group.

void Fl_Group::remove(Fl_Widget &w)

Removes a widget from the group. This does nothing if the widget is not currently a child of this group.

static Fl_Group *Fl_Group::current()
static void Fl_Group::current(Fl_Group *w)

current() returns the currently active group. The Fl_Widget constructor automatically does
current()−>add(widget) if this is not null. To prevent new widgets from being added to a group, call
Fl_Group::current(0).

void Fl_Group::begin()

begin() sets the current group so you can build the widget tree by just constructing the widgets.
begin() is automatically called by the constructor for Fl_Group (and thus for Fl_Window as well).
begin() is exactly the same as current(this).

Don't forget to end() the group or window!

void Fl_Group::end()

end() is exactly the same as current(this−>parent()). Any new widgets added to the widget tree
will be added to the parent of the group.

const Fl_Widget **Fl_Group::array() const

Returns a pointer to the array of children. This pointer is only valid until the next time a child is added or
removed.

Fl_Widget *Fl_Group::child(int n) const

Returns array()[n]. No range checking is done!

int Fl_Group::children() const

Returns how many child widgets the group has.

int Fl_Group::find(const Fl_Widget *w) const
int Fl_Group::find(const Fl_Widget &w) const

FLTK 1.0.11 Programming Manual

134 class Fl_Group

Searches the child array for the widget and returns the index. Returns children() if the widget is NULL or
not found.

void Fl_Group::resizable(Fl_Widget *box)
void Fl_Group::resizable(Fl_Widget &box)
Fl_Widget *Fl_Group::resizable() const

The resizable widget defines the resizing box for the group. When the group is resized it calculates a new size
and position for all of its children. Widgets that are horizontally or vertically inside the dimensions of the box
are scaled to the new size. Widgets outside the box are moved.

In these examples the gray area is the resizable:

The resizable may be set to the group itself (this is the default value for an Fl_Group, although NULL is the
default for an Fl_Window), in which case all the contents are resized. If the resizable is NULL then all
widgets remain a fixed size and distance from the top−left corner.

It is possible to achieve any type of resize behavior by using an invisible Fl_Box as the resizable and/or by
using a hierarchy of child Fl_Group's.

Fl_Group &Fl_Group::add_resizable(Fl_Widget &box)

Adds a widget to the group and makes it the resizable widget.

FLTK 1.0.11 Programming Manual

class Fl_Group 135

class Fl_Hold_Browser

Class Hierarchy

Fl_Browser
 |
 +−−−−Fl_Hold_Browser

Include Files

#include <FL/Fl_Hold_Browser.H>

Description

The Fl_Hold_Browser class is a subclass of Fl_Browser which lets the user select a single item, or no
items by clicking on the empty space. As long as the mouse button is held down the item pointed to by it is
highlighted, and this highlighting remains on when the mouse button is released. Normally the callback is
done when the user releases the mouse, but you can change this with when().

See Fl_Browser for methods to add and remove lines from the browser.

Methods

Fl_Hold_Browser•
~Fl_Hold_Browser•
deselect•
select•
value•

Fl_Hold_Browser::Fl_Hold_Browser(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Hold_Browser widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Hold_Browser::~Fl_Hold_Browser()

The destructor also deletes all the items in the list.

int Fl_Browser::deselect()

Same as value(0).

int Fl_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

You can use these for compatibility with Fl_Multi_Browser. If you turn on the selection of more than
one line the results are unpredictable.

FLTK 1.0.11 Programming Manual

136 class Fl_Hold_Browser

int Fl_Browser::value() const
void Fl_Browser::value(int)

Set or get which line is selected. This returns zero if no line is selected, so be aware that this can happen in a
callback.

FLTK 1.0.11 Programming Manual

class Fl_Hold_Browser 137

class Fl_Input

Class Hierarchy

Fl_Input_
 |
 +−−−−Fl_Input
 |
 +−−−− Fl_Float_Input, Fl_Int_Input,

Fl_Multiline_Input, Fl_Secret_Input

Include Files

#include <FL/Fl_Input.H>

Description

This is the FLTK text input widget. It displays a single line of text and lets the user edit it. Normally it is
drawn with an inset box and a white background. The text may contain any characters (even 0), and will
correctly display anything, using ^X notation for unprintable control characters and \nnn notation for
unprintable characters with the high bit set. It assumes the font can draw any characters in the ISO−8859−1
character set.

Mouse button 1

Moves the cursor to this point. Drag selects characters. Double
click selects words. Triple click selects all text. Shift+click
extends the selection. When you select text it is automatically
copied to the clipboard.

Mouse button 2
Insert the clipboard at the point clicked. You can also select a
region and replace it with the clipboard by selecting the region
with mouse button 2.

Mouse button 3 Currently acts like button 1.

Backspace Deletes one character to the left, or deletes the selected region.

Enter May cause the callback, see when().

^A or Home Go to start of line.

^B or Left Move left

^C Copy the selection to the clipboard

^D or Delete Deletes one character to the right or deletes the selected region.

^E or End Go to the end of line.

^F or Right Move right

^K
Delete to the end of line (next \n character) or deletes a single \n
character. These deletions are all concatenated into the clipboard.

^N or Down
Move down (for Fl_Multiline_Input only, otherwise it moves to
the next input field).

^P or Up
Move up (for Fl_Multiline_Input only, otherwise it moves to the
previous input field).

FLTK 1.0.11 Programming Manual

138 class Fl_Input

^U Delete everything.

^V or ^Y Paste the clipboard

^X or ^W Copy the region to the clipboard and delete it.

^Z or ^_
Undo. This is a single−level undo mechanism, but all adjacent
deletions and insertions are concatenated into a single "undo".
Often this will undo a lot more than you expected.

Shift+move Move the cursor but also extend the selection.

RightCtrl or
Compose

Start a compose−character sequence. The next one or two keys
typed define the character to insert (see table that follows.)

For instance, to type "á" type [compose][a]['] or [compose]['][a].

The character "nbsp" (non−breaking space) is typed by using
[compose][space].

The single−character sequences may be followed by a space if
necessary to remove ambiguity. For instance, if you really want
to type "ª~" rather than "ã" you must type
[compose][a][space][~].

The same key may be used to "quote" control characters into the
text. If you need a ^Q character you can get one by typing
[compose][Control+Q].

X may have a key on the keyboard defined as XK_Multi_key.
If so this key may be used as well as the right−hand control key.
You can set this up with the program xmodmap.

If your keyboard is set to support a foreign language you should
also be able to type "dead key" prefix characters. On X you will
actually be able to see what dead key you typed, and if you then
move the cursor without completing the sequence the accent will
remain inserted.

FLTK 1.0.11 Programming Manual

class Fl_Input 139

Character Composition Table

Keys Char Keys Char Keys Char Keys Char Keys Char Keys Char

sp nbsp * ° ` A À D − Ð ` a à d − ð

! ¡ + − ± ' A Á ~ N Ñ ' a á ~ n ñ

% ¢ 2 ² A ^ Â ` O Ò ^ a â ` o ò

£ 3 ³ ~ A Ã ' O Ó ~ a ã ' o ó

$ ¤ ' ´ : A Ä ^ O Ô : a ä ^ o ô

y = ¥ u µ * A Å ~ O Õ * a å ~ o õ

| ¦ p ¶ A E Æ : O Ö a e æ : o ö

& § . · , C Ç x × , c ç − : ÷

: ¨ , ¸ E ` È O / Ø ` e è o / ø

c © 1 ¹ ' E É ` U Ù ' e é ` u ù

a ª o º ^ E Ê ' U Ú ^ e ê ' u ú

< < « > > » : E Ë ^ U Û : e ë ^ u û

~ ¬ 1 4 ¼ ` I Ì : U Ü ` i ì : u ü

− - 1 2 ½ ' I Í ' Y Ý ' i í ' y ý

r ® 3 4 ¾ ^ I Î T H Þ ^ i î t h þ

_ ¯ ? ¿ : I Ï s s ß : i ï : y ÿ

Methods

Fl_Input•
~Fl_Input•
cursor_color•

index•
size•

static_value•
textcolor•

textfont•
textsize•

value•
when•

Fl_Input::Fl_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Input widget using the given position, size, and label string. The default boxtype is
FL_DOWN_BOX.

virtual Fl_Input::~Fl_Input()

Destroys the widget and any value associated with it.

const char *Fl_Input::value() const
int Fl_Input::value(const char*)
int Fl_Input::value(const char*, int)

The first form returns the current value, which is a pointer to the internal buffer and is valid only until the
next event is handled.

The second two forms change the text and set the mark and the point to the end of it. The string is copied to
the internal buffer. Passing NULL is the same as "". This returns non−zero if the new value is different than
the current one. You can use the second version to directly set the length if you know it already or want to put

FLTK 1.0.11 Programming Manual

140 class Fl_Input

nul's in the text.

int Fl_Input::static_value(const char*)
int Fl_Input::static_value(const char*, int)

Change the text and set the mark and the point to the end of it. The string is not copied. If the user edits the
string it is copied to the internal buffer then. This can save a great deal of time and memory if your program
is rapidly changing the values of text fields, but this will only work if the passed string remains unchanged
until either the Fl_Input is destroyed or value() is called again.

int Fl_Input::size() const

Returns the number of characters in value(). This may be greater than strlen(value()) if there are
nul characters in it.

char Fl_Input::index(int) const

Same as value()[n], but may be faster in plausible implementations. No bounds checking is done.

Fl_When Fl_Widget::when() const
void Fl_Widget::when(Fl_When)

Controls when callbacks are done. The following values are useful, the default value is
FL_WHEN_RELEASE:

0: The callback is not done, but changed() is turned on. •
FL_WHEN_CHANGED: The callback is done each time the text is changed by the user. •
FL_WHEN_RELEASE: The callback will be done when this widget loses the focus, including when
the window is unmapped. This is a useful value for text fields in a panel where doing the callback on
every change is wasteful. However the callback will also happen if the mouse is moved out of the
window, which means it should not do anything visible (like pop up an error message). You might do
better setting this to zero, and scanning all the items for changed() when the OK button on a panel
is pressed.

•

FL_WHEN_ENTER_KEY: If the user types the Enter key, the entire text is selected, and the callback
is done if the text has changed. Normally the Enter key will navigate to the next field (or insert a
newline for a Fl_Mulitline_Input), this changes the behavior.

•

FL_WHEN_ENTER_KEY|FL_WHEN_NOT_CHANGED: The Enter key will do the callback even if
the text has not changed. Useful for command fields.

•

Fl_Color Fl_Input::textcolor() const
void Fl_Input::textcolor(Fl_Color)

Gets or sets the color of the text in the input field.

Fl_Font Fl_Input::textfont() const
void Fl_Input::textfont(Fl_Font)

Gets or sets the font of the text in the input field.

FLTK 1.0.11 Programming Manual

class Fl_Input 141

uchar Fl_Input::textsize() const
void Fl_Input::textsize(uchar)

Gets or sets the size of the text in the input field.

Fl_Color Fl_Input::cursor_color() const
void Fl_Input::cursor_color(Fl_Color)

Get or set the color of the cursor. This is black by default.

FLTK 1.0.11 Programming Manual

142 class Fl_Input

class Fl_Input_

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Input_
 |
 +−−−−Fl_Input, Fl_Output

Include Files

#include <FL/Fl_Input_.H>

Description

This is a virtual base class below Fl_Input. It has all the same interfaces, but lacks the handle() and
draw() method. You may want to subclass it if you are one of those people who likes to change how the
editing keys work.

This can act like any of the subclasses of Fl_Input, by setting type() to one of the following values:

#define FL_NORMAL_INPUT 0
#define FL_FLOAT_INPUT 1
#define FL_INT_INPUT 2
#define FL_MULTILINE_INPUT 4
#define FL_SECRET_INPUT 5

Methods

Fl_Input_•
~Fl_Input_•
copy•
copy_cuts•

cut•
drawtext•
handletext•
insert•

lineboundary•
mark•
maybe_do_callback•

maximum_size•
position•
replace•

undo•
up_down_position•
wordboundary•

Fl_Input_::Fl_Input_(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Input_ widget using the given position, size, and label string. The default boxtype is
FL_DOWN_BOX.

virtual Fl_Input_::~Fl_Input_()

The destructor removes the widget and any value associated with it.

int Fl_Input_::wordboundary(int i) const

Returns true if position i is at the start or end of a word.

FLTK 1.0.11 Programming Manual

class Fl_Input_ 143

int Fl_Input_::lineboundary(int i) const

Returns true if position i is at the start or end of a line.

void Fl_Input_::drawtext(int,int,int,int)

Draw the text in the passed bounding box. If damage() FL_DAMAGE_ALL is true, this assummes the area
has already been erased to color(). Otherwise it does minimal update and erases the area itself.

void Fl_Input_::handletext(int e,int,int,int,int)

Default handler for all event types. Your handle() method should call this for all events that it does not
handle completely. You must pass it the same bounding box as passed to draw(). Handles FL_PUSH,
FL_DRAG, FL_RELEASE to select text, handles FL_FOCUS and FL_UNFOCUS to show and hide the
cursor.

int Fl_Input_::up_down_position(int i, int keepmark=0)

Do the correct thing for arrow keys. Sets the position (and mark if keepmark is zero) to somewhere in the
same line as i, such that pressing the arrows repeatedly will cause the point to move up and down.

void Fl_Input_::maybe_do_callback()

Does the callback if changed() is true or if when() FL_WHEN_NOT_CHANGED is non−zero. You should
call this at any point you think you should generate a callback.

void Fl_Input_::maximum_size(int m)
int Fl_Input_::maximum_size() const

Sets or returns the maximum length of the input field.

int Fl_Input_::position() const
int Fl_Input_::position(int new_position, int new_mark)
int Fl_Input_::position(int new_position_and_new_mark)

The input widget maintains two pointers into the string. The "position" is where the cursor is. The "mark" is
the other end of the selected text. If they are equal then there is no selection. Changing this does not affect the
clipboard (use copy() to do that).

Changing these values causes a redraw(). The new values are bounds checked. The return value is
non−zero if the new position is different than the old one. position(n) is the same as position(n,n).
mark(n) is the same as position(position(),n).

int Fl_Input_::mark() const
int Fl_Input_::mark(int new_mark)

Gets or sets the current selection mark. mark(n) is the same as position(position(),n).

FLTK 1.0.11 Programming Manual

144 class Fl_Input_

int Fl_Input_::replace(int a, int b, const char *insert, int length=0)

This call does all editing of the text. It deletes the region between a and b (either one may be less or equal to
the other), and then inserts the string insert at that point and leaves the mark() and position() after
the insertion. Does the callback if when() FL_WHEN_CHANGED and there is a change.

Set start and end equal to not delete anything. Set insert to NULL to not insert anything.

length must be zero or strlen(insert), this saves a tiny bit of time if you happen to already know the
length of the insertion, or can be used to insert a portion of a string or a string containing nul's.

a and b are clamped to the 0..size() range, so it is safe to pass any values.

cut() and insert() are just inline functions that call replace().

int Fl_Input_::cut()
int Fl_Input_::cut(int n)
int Fl_Input_::cut(int a, int b);

Fl_Input_::cut() deletes the current selection. cut(n) deletes n characters after the position().
cut(−n) deletes n characters before the position() . cut(a,b) deletes the characters between offsets
a and b. A, b, and n are all clamped to the size of the string. The mark and point are left where the deleted
text was.

If you want the data to go into the clipboard, do Fl_Input_::copy() before calling
Fl_Input_::cut(), or do Fl_Input_::copy_cuts() afterwards.

int Fl_Input_::insert(const char *t,int l=0)

Insert the string t at the current position, and leave the mark and position after it. If l is not zero then it is
assummed to be strlen(t).

int Fl_Input_::copy()

Put the current selection between mark() and position() into the clipboard. Does not replace the old
clipboard contents if position() and mark() are equal.

int Fl_Input_::undo()

Does undo of several previous calls to replace(). Returns non−zero if any change was made.

int Fl_Input_::copy_cuts()

Copy all the previous contiguous cuts from the undo information to the clipboard. This is used to make ^K
work.

FLTK 1.0.11 Programming Manual

class Fl_Input_ 145

class Fl_Int_Input

Class Hierarchy

Fl_Input
 |
 +−−−−Fl_Int_Input

Include Files

#include <FL/Fl_Int_Input.H>

Description

The Fl_Int_Input class is a subclass of Fl_Input that only allows the user to type decimal digits (or
hex numbers of the form 0xaef).

Methods

Fl_Int_Input•
~Fl_Int_Input•

Fl_Int_Input::Fl_Int_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Int_Input widget using the given position, size, and label string. The default boxtype
is FL_DOWN_BOX.

virtual Fl_Int_Input::~Fl_Int_Input()

Destroys the widget and any value associated with it.

FLTK 1.0.11 Programming Manual

146 class Fl_Int_Input

class Fl_Light_Button

Class Hierarchy

Fl_Button
 |
 +−−−−Fl_Light_Button

Include Files

#include <FL/Fl_Light_Button.H>

Description

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

The Fl_Light_Button subclass display the "on" state by turning on a light, rather than drawing pushed
in. The shape of the "light" is initially set to FL_DOWN_BOX. The color of the light when on is controlled
with selection_color(), which defaults to FL_YELLOW.

Methods

Fl_Light_Button•
~Fl_Light_Button•

Fl_Light_Button::Fl_Light_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Light_Button widget using the given position, size, and label string.

Fl_Light_Button::~Fl_Light_Button()

The destructor deletes the check button.

FLTK 1.0.11 Programming Manual

class Fl_Light_Button 147

class Fl_Menu_

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Menu_−−−− Fl_Menu_Item
 |
 +−−−− Fl_Choice, Fl_Menu_Bar, Fl_Menu_Button

Include Files

#include <FL/Fl_Menu_.H>

Description

All widgets that have a menu in FLTK are subclassed off of this class. Currently FLTK provides you with
Fl_Menu_Button, Fl_Menu_Bar, and Fl_Choice .

The class contains a pointer to an array of structures of type Fl_Menu_Item. The array may either be
supplied directly by the user program, or it may be "private": a dynamically allocated array managed by the
Fl_Menu_.

Methods

Fl_Menu_•
~Fl_Menu_•
add•
clear•

copy•
down_box•
global•
menu•

mode•
remove•
replace•
shortcut•

size•
test_shortcut•
text•
textcolor•

textfont•
textsize•
value•

Fl_Menu_::Fl_Menu_(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Menu_ widget using the given position, size, and label string. menu() is initialized to
null.

virtual Fl_Menu_::~Fl_Menu_()

If the menu array is private the memory it uses is freed.

const Fl_Menu_Item* Fl_Menu_::menu() const

Returns a pointer to the array of Fl_Menu_Items. This will either be the value passed to menu(value) or
the private copy.

void Fl_Menu_::menu(const Fl_Menu_Item*)

Set the menu array pointer directly. If the old menu is private it is deleted. NULL is allowed and acts the same
as a zero−length menu. If you try to modify the array (with add(), replace(), or delete()) a private copy is
automatically done.

FLTK 1.0.11 Programming Manual

148 class Fl_Menu_

void Fl_Menu_::copy(const Fl_Menu_Item*)

The menu is set to a private copy of the passed Fl_Menu_Item array. This is useful if you want to modify the
flags of the menu items.

void Fl_Menu_::clear()

Same as menu(NULL), set the array pointer to null, indicating a zero−length menu.

int Fl_Menu_::size() const

This returns the number of Fl_Menu_Item structures that make up the menu, correctly counting submenus.
This includes the "terminator" item at the end. To copy a menu array you need to copy
size()*sizeof(Fl_Menu_Item) bytes. If the menu is NULL this returns zero (an empty menu will
return 1).

int Fl_Menu_::add(const char* label, const char* shortcut, Fl_Callback*, void *user_data=0,
int flags=0)

Adds a new menu item, with a title string, shortcut string, callback, argument to the callback, and
flags. If the menu array was directly set with menu(x) then copy() is done to make a private array.

Text is a string of the form "foo/bar/baz", this example will result in a submenu called "foo" and one in that
called "bar" and and entry called "baz". The text is copied to new memory and can be freed. The other
arguments (including the shortcut) are copied into the menu item unchanged.

If an item exists already with that name then it is replaced with this new one. Otherwise this new one is added
to the end of the correct menu or submenu. The return value is the offset into the array that the new entry was
placed at.

The return value is the index into the array that the entry was put.

int Fl_Menu_::add(const char *)

The passed string is split at any '|' characters and then add(s,0,0,0,0) is done with each section. This is
often useful if you are just using the value, and is compatable with Forms and other GL programs.

void Fl_Menu_::replace(int n, const char *)

Changes the text of item n. This is the only way to get slash into an add()'ed menu item. If the menu array
was directly set with menu(x) then copy() is done to make a private array.

void Fl_Menu_::remove(int n)

Deletes item n from the menu. If the menu array was directly set with menu(x) then copy() is done to make a
private array.

void Fl_Menu_::shortcut(int i, int n);

Changes the shortcut of item i to n.

FLTK 1.0.11 Programming Manual

class Fl_Menu_ 149

void Fl_Menu_::mode(int i, int x);

Changes the flags of item i. For a list of the flags, see Fl_Menu_Item.

int Fl_Menu_::value() const
int Fl_Menu_::value(int)
const Fl_Menu_Item* mvalue() const
int Fl_Menu_::value(const Fl_Menu_Item*)

The value is the index into menu() of the last item chosen by the user. It is zero initially. You can set it as
an integer, or set it with a pointer to a menu item. The set routines return non−zero if the new value is
different than the old one.

const Fl_Menu_Item* Fl_Menu_::test_shortcut()

Only call this in response to FL_SHORTCUT events. If the event matches an entry in the menu that entry
is selected and the callback will be done (or changed() will be set). This allows shortcuts directed at one
window to call menus in another.

void Fl_Menu_::global()

Make the shortcuts for this menu work no matter what window has the focus when you type it. This is done
by using Fl::add_handler(). This Fl_Menu_ widget does not have to be visible (ie the window it is
in can be hidden, or it does not have to be put in a window at all).

Currently there can be only one global()menu. Setting a new one will replace the old one. There is no
way to remove the global() setting (so don't destroy the widget!)

const char* Fl_Menu_::text() const
const char* Fl_Menu_::text(int i) const

Returns the title of the last item chosen, or of item i.

Fl_Color Fl_Menu_::textcolor() const
void Fl_Menu_::textcolor(Fl_Color)

Get or set the current color of menu item labels.

Fl_Font Fl_Menu_::textfont() const
void Fl_Menu_::textfont(Fl_Font)

Get or set the current font of menu item labels.

uchar Fl_Menu_::textsize() const
void Fl_Menu_::textsize(uchar)

Get or set the font size of menu item labels.

FLTK 1.0.11 Programming Manual

150 class Fl_Menu_

Fl_Boxtype Fl_Menu_::down_box() const
void Fl_Menu_::down_box(Fl_Boxtype)

This box type is used to surround the currently−selected items in the menus. If this is FL_NO_BOX then it
acts like FL_THIN_UP_BOX and selection_color() acts like FL_WHITE, for back compatability.

FLTK 1.0.11 Programming Manual

class Fl_Menu_ 151

class Fl_Menu_Bar

Class Hierarchy

Fl_Menu_
 |
 +−−−−Fl_Menu_Bar

Include Files

#include <FL/Fl_Menu_Bar.H>

Description

This widget provides a standard menubar interface. Usually you will put this widget along the top edge of
your window. The height of the widget should be 30 for the menu titles to draw correctly with the default
font.

The items on the bar and the menus they bring up are defined by a single Fl_Menu_Item array. Because a
Fl_Menu_Item array defines a hierarchy, the top level menu defines the items in the menubar, while the
submenus define the pull−down menus. Sub−sub menus and lower pop up to the right of the submenus.

If there is an item in the top menu that is not a title of a submenu, then it acts like a "button" in the menubar.
Clicking on it will pick it.

When the user picks an item off the menu, the item's callback is done with the menubar as the
Fl_Widget* argument. If the item does not have a callback the menubar's callback is done instead.

Submenus will also pop up in response to shortcuts indicated by putting a '&' character in the name field of
the menu item. If you put a '&' character in a top−level "button" then the shortcut picks it. The '&' character in
submenus is ignored until the menu is popped up.

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick
the item with the mouse.

Methods

Fl_Menu_Bar•
~Fl_Menu_Bar•

FLTK 1.0.11 Programming Manual

152 class Fl_Menu_Bar

Fl_Menu_Bar::Fl_Menu_Bar(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Menu_Bar widget using the given position, size, and label string. The default boxtype is
FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

labelsize(), labelfont(), and labelcolor() are used to control how the menubar items are
drawn. They are initialized from the Fl_Menu static variables, but you can change them if desired.

label() is ignored unless you change align() to put it outside the menubar.

virtual Fl_Menu_Bar::~Fl_Menu_Bar()

The destructor removes the Fl_Menu_Bar widget and all of its menu items.

FLTK 1.0.11 Programming Manual

class Fl_Menu_Bar 153

class Fl_Menu_Button

Class Hierarchy

Fl_Menu_
 |
 +−−−−Fl_Menu_Button

Include Files

#include <FL/Fl_Menu_Button.H>

Description

This is a button that when pushed pops up a menu (or hierarchy of menus) defined by an array of
Fl_Menu_Item objects.

Normally any mouse button will pop up a menu and it is lined up below the button as shown in the picture.
However an Fl_Menu_Button may also control a pop−up menu. This is done by setting the type() , see
below.

The menu will also pop up in response to shortcuts indicated by putting a '&' character in the label().

Typing the shortcut() of any of the menu items will cause callbacks exactly the same as when you pick
the item with the mouse. The '&' character in menu item names are only looked at when the menu is popped
up, however.

When the user picks an item off the menu, the item's callback is done with the menu_button as the
Fl_Widget* argument. If the item does not have a callback the menu_button's callback is done instead.

Methods

Fl_Menu_Button•
~Fl_Menu_Button•
popup•
type•

FLTK 1.0.11 Programming Manual

154 class Fl_Menu_Button

Fl_Menu_Button::Fl_Menu_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Menu_Button widget using the given position, size, and label string. The default
boxtype is FL_UP_BOX.

The constructor sets menu() to NULL. See Fl_Menu_ for the methods to set or change the menu.

virtual Fl_Menu_Button::~Fl_Menu_Button()

The destructor removes the Fl_Menu_Button widget and all of its menu items.

const Fl_Menu* Fl_Menu_Button::popup()

Act exactly as though the user clicked the button or typed the shortcut key. The menu appears, it waits for the
user to pick an item, and if they pick one it sets value() and does the callback or sets changed() as
described above. The menu item is returned or NULL if the user dismisses the menu.

void Fl_Menu_Button::type(uchar)

If type() is zero a normal menu button is produced. If it is nonzero then this is a pop−up menu. The bits in
type() indicate what mouse buttons pop up the menu. For convienece the constants
Fl_Menu_Button::POPUP1, POPUP2, POPUP3, POPUP12, POPUP13, POPUP23, and
POPUP123 are defined. Fl_Menu_Button::POPUP3 is usually what you want.

A popup menu button is invisible and does not interfere with any events other than the mouse button
specified (and any shortcuts). The widget can be stretched to cover all your other widgets by putting it last in
the hierarchy so it is "on top". You can also make several widgets covering different areas for
context−sensitive popup menus.

The popup menus appear with the cursor pointing at the previously selected item. This is a feature. If you
don't like it, do value(0) after the menu items are picked to forget the current item.

FLTK 1.0.11 Programming Manual

class Fl_Menu_Button 155

struct Fl_Menu_Item

Class Hierarchy

struct Fl_Menu_Item

Include Files

#include <FL/Fl_Menu_Item.H>

Description

The Fl_Menu_Item structure defines a single menu item that is used by the Fl_Menu_ class. This structure
is defined in <FL/Fl_Menu_Item.H>

struct Fl_Menu_Item {
 const char* text; // label()
 ulong shortcut_;
 Fl_Callback* callback_;
 void* user_data_;
 int flags;
 uchar labeltype_;
 uchar labelfont_;
 uchar labelsize_;
 uchar labelcolor_;
};

enum { // values for flags:
 FL_MENU_INACTIVE = 1,
 FL_MENU_TOGGLE = 2,
 FL_MENU_VALUE = 4,
 FL_MENU_RADIO = 8,
 FL_MENU_INVISIBLE = 0x10,
 FL_SUBMENU_POINTER = 0x20,
 FL_SUBMENU = 0x40,
 FL_MENU_DIVIDER = 0x80,
 FL_MENU_HORIZONTAL = 0x100
};

Typically menu items are statically defined; for example:

Fl_Menu_Item popup[] = {
 {"&alpha", FL_ALT+'a', the_cb, (void*)1},
 {"&beta", FL_ALT+'b', the_cb, (void*)2},
 {"gamma", FL_ALT+'c', the_cb, (void*)3, FL_MENU_DIVIDER},
 {"&strange", 0, strange_cb},
 {"&charm", 0, charm_cb},
 {"&truth", 0, truth_cb},
 {"b&eauty", 0, beauty_cb},
 {"sub&menu", 0, 0, 0, FL_SUBMENU},
 {"one"},
 {"two"},
 {"three"},
 {0},
 {"inactive", FL_ALT+'i', 0, 0, FL_MENU_INACTIVE|FL_MENU_DIVIDER},

FLTK 1.0.11 Programming Manual

156 struct Fl_Menu_Item

 {"invisible",FL_ALT+'i', 0, 0, FL_MENU_INVISIBLE},
 {"check", FL_ALT+'i', 0, 0, FL_MENU_TOGGLE|FL_MENU_VALUE},
 {"box", FL_ALT+'i', 0, 0, FL_MENU_TOGGLE},
{0}};

produces:

A submenu title is identified by the bit FL_SUBMENU in the flags field, and ends with a label() that is
NULL. You can nest menus to any depth. A pointer to the first item in the submenu can be treated as an
Fl_Menu array itself. It is also possible to make seperate submenu arrays with
FL_SUBMENU_POINTER flags.

You should use the method functions to access structure members and not access them directly to avoid
compatibility problems with future releases of FLTK.

Methods

label•
labeltype•
labelcolor•
labelfont•
labelsize•
callback•

user_data•
argument•
do_callback•
shortcut•
submenu•
checkbox•

radio•
value•
set•
setonly•
clear•
visible•

show•
hide•
active•
activate•
deactivate•

popup•
pulldown•
test_shortcut•
size•
next•

const char* Fl_Menu_Item::label() const
void Fl_Menu_Item::label(const char*)
void Fl_Menu_Item::label(Fl_Labeltype, const char*)

This is the title of the item. A NULL here indicates the end of the menu (or of a submenu). A '&' in the item
will print an underscore under the next letter, and if the menu is popped up that letter will be a "shortcut" to
pick that item. To get a real '&' put two in a row.

Fl_Labeltype Fl_Menu_Item::labeltype() const
void Fl_Menu_Item::labeltype(Fl_Labeltype)

A labeltype identifies a routine that draws the label of the widget. This can be used for special effects
such as emboss, or to use the label() pointer as another form of data such as a bitmap. The value

FLTK 1.0.11 Programming Manual

struct Fl_Menu_Item 157

FL_NORMAL_LABEL prints the label as text.

Fl_Color Fl_Menu_Item::labelcolor() const
void Fl_Menu_Item::labelcolor(Fl_Color)

This color is passed to the labeltype routine, and is typically the color of the label text. This defaults to
FL_BLACK. If this color is not black fltk will not use overlay bitplanes to draw the menu − this is so that
images put in the menu draw correctly.

Fl_Font Fl_Menu_Item::labelfont() const
void Fl_Menu_Item::labelfont(Fl_Font)

Fonts are identified by small 8−bit indexes into a table. See the enumeration list for predefined fonts. The
default value is a Helvetica font. The function Fl::set_font() can define new fonts.

uchar Fl_Menu_Item::labelsize() const
void Fl_Menu_Item::labelsize(uchar)

Gets or sets the label font pixel size/height.

typedef void (Fl_Callback)(Fl_Widget*, void*)
Fl_Callback* Fl_Menu_Item::callback() const
void Fl_Menu_Item::callback(Fl_Callback*, void* = 0)
void Fl_Menu_Item::callback(void (*)(Fl_Widget*))

Each item has space for a callback function and an argument for that function. Due to back compatability, the
Fl_Menu_Item itself is not passed to the callback, instead you have to get it by calling
((Fl_Menu_*)w)−>mvalue() where w is the widget argument.

void* Fl_Menu_Item::user_data() const
void Fl_Menu_Item::user_data(void*)

Get or set the user_data argument that is sent to the callback function.

void Fl_Menu_Item::callback(void (*)(Fl_Widget*, long), long = 0)
long Fl_Menu_Item::argument() const
void Fl_Menu_Item::argument(long)

For convenience you can also define the callback as taking a long argument. This is implemented by casting
this to a Fl_Callback and casting the long to a void* and may not be portable to some machines.

void Fl_Menu_Item::do_callback(Fl_Widget*)
void Fl_Menu_Item::do_callback(Fl_Widget*, void*)
void Fl_Menu_Item::do_callback(Fl_Widget*, long)

Call the Fl_Menu_Item item's callback, and provide the Fl_Widget argument (and optionally override
the user_data() argument). You must first check that callback() is non−zero before calling this.

FLTK 1.0.11 Programming Manual

158 struct Fl_Menu_Item

ulong Fl_Menu_Item::shortcut() const
void Fl_Menu_Item::shortcut(ulong)

Sets exactly what key combination will trigger the menu item. The value is a logical 'or' of a key and a set of
shift flags, for instance FL_ALT+'a' or FL_ALT+FL_F+10 or just 'a'. A value of zero disables the
shortcut.

The key can be any value returned by Fl::event_key(), but will usually be an ASCII letter. Use a
lower−case letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by Fl::event_state(). If the bit is on that shift key
must be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicates a "don't care" setting).

int Fl_Menu_Item::submenu() const

Returns true if either FL_SUBMENU or FL_SUBMENU_POINTER is on in the flags. FL_SUBMENU indicates
an embedded submenu that goes from the next item through the next one with a NULL label().
FL_SUBMENU_POINTER indicates that user_data() is a pointer to another menu array.

int Fl_Menu_Item::checkbox() const

Returns true if a checkbox will be drawn next to this item. This is true if FL_MENU_TOGGLE or
FL_MENU_RADIO is set in the flags.

int Fl_Menu_Item::radio() const

Returns true if this item is a radio item. When a radio button is selected all "adjacent" radio buttons are turned
off. A set of radio items is delimited by an item that has radio() false, or by an item with
FL_MENU_DIVIDER turned on.

int Fl_Menu_Item::value() const

Returns the current value of the check or radio item.

void Fl_Menu_Item::set()

Turns the check or radio item "on" for the menu item. Note that this does not turn off any adjacent radio
items like set_only() does.

void Fl_Menu_Item::setonly()

Turns the radio item "on" for the menu item and turns off adjacent radio item.

void Fl_Menu_Item::clear()

Turns the check or radio item "off" for the menu item.

FLTK 1.0.11 Programming Manual

struct Fl_Menu_Item 159

int Fl_Menu_Item::visible() const

Gets the visibility of an item.

void Fl_Menu_Item::show()

Makes an item visible in the menu.

void Fl_Menu_Item::hide()

Hides an item in the menu.

int Fl_Menu_Item::active() const

Get whether or not the item can be picked.

void Fl_Menu_Item::activate()

Allows a menu item to be picked.

void Fl_Menu_Item::deactivate()

Prevents a menu item from being picked. Note that this will also cause the menu item to appear grayed−out.

const Fl_Menu_Item *Fl_Menu_Item::popup(int X, int Y, const char* title = 0, const
Fl_Menu_Item* picked = 0, const Fl_Menu_* button = 0) const

This method is called by widgets that want to display menus. The menu stays up until the user picks an item
or dismisses it. The selected item (or NULL if none) is returned. This does not do the callbacks or change the
state of check or radio items.

X,Y is the position of the mouse cursor, relative to the window that got the most recent event (usually you
can pass Fl::event_x() and Fl::event_y() unchanged here).

title is a character string title for the menu. If non−zero a small box appears above the menu with the title
in it.

The menu is positioned so the cursor is centered over the item picked. This will work even if picked is in
a submenu. If picked is zero or not in the menu item table the menu is positioned with the cursor in the
top−left corner.

button is a pointer to an Fl_Menu_ from which the color and boxtypes for the menu are pulled. If
NULL then defaults are used.

const Fl_Menu_Item *Fl_Menu_Item::pulldown(int X, int Y, int W, int H, const Fl_Menu_Item*
picked = 0, const Fl_Menu_* button = 0, const Fl_Menu_Item* title = 0, int menubar=0) const

pulldown() is similar to popup(), but a rectangle is provided to position the menu. The menu is made at
least W wide, and the picked item is centered over the rectangle (like Fl_Choice uses). If picked is
zero or not found, the menu is aligned just below the rectangle (like a pulldown menu).

FLTK 1.0.11 Programming Manual

160 struct Fl_Menu_Item

The title and menubar arguments are used internally by the Fl_Menu_Bar widget.

const Fl_Menu_Item* Fl_Menu_Item::test_shortcut() const

This is designed to be called by a widgets handle() method in response to a FL_SHORTCUT event. If the
current event matches one of the items shortcut, that item is returned. If the keystroke does not match any
shortcuts then NULL is returned. This only matches the shortcut() fields, not the letters in the title
preceeded by '

int Fl_Menu_Item::size()

Returns the number of Fl_Menu_Item structures that make up this menu, correctly counting submenus. This
includes the "terminator" item at the end. So to copy a menu you need to copy
size()*sizeof(Fl_Menu_Item) bytes.

const Fl_Menu_Item* Fl_Menu_Item::next(int n=1) const
Fl_Menu_Item* Fl_Menu_Item::next(int n=1);

Advance a pointer by n items through a menu array, skipping the contents of submenus and invisible items.
There are two calls so that you can advance through const and non−const data.

FLTK 1.0.11 Programming Manual

struct Fl_Menu_Item 161

class Fl_Menu_Window

Class Hierarchy

Fl_Single_Window
 |
 +−−−−Fl_Menu_Window

Include Files

#include <FL/Fl_Menu_Window.H>

Description

The Fl_Menu_Window widget is a window type used for menus. By default the window is drawn in the
hardware overlay planes if they are available so that the menu don't force the rest of the window to redraw.

Methods

Fl_Menu_Window•
~Fl_Menu_Window•
clear_overlay•
set_overlay•

Fl_Menu_Window::Fl_Menu_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Menu_Window widget using the given position, size, and label string.

virtual Fl_Menu_Window::~Fl_Menu_Window()

Destroys the window and all of its children.

Fl_Menu_Window::clear_overlay();

Tells FLTK to use normal drawing planes instead of overlay planes. This is usually necessary if your menu
contains multi−color pixmaps.

Fl_Menu_Window::set_overlay()

Tells FLTK to use hardware overlay planes if they are available.

FLTK 1.0.11 Programming Manual

162 class Fl_Menu_Window

class Fl_Multi_Browser

Class Hierarchy

Fl_Browser
 |
 +−−−−Fl_Multi_Browser

Include Files

#include <FL/Fl_Multi_Browser.H>

Description

The Fl_Multi_Browser class is a subclass of Fl_Browser which lets the user select any set of the
lines. The user interface is Macintosh style: clicking an item turns off all the others and selects that one,
dragging selects all the items the mouse moves over, and shift + click toggles the items. This is different then
how forms did it. Normally the callback is done when the user releases the mouse, but you can change this
with when().

See Fl_Browser for methods to add and remove lines from the browser.

Methods

Fl_Multi_Browser•
~Fl_Multi_Browser•
deselect•
select•
value•

Fl_Multi_Browser::Fl_Multi_Browser(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Multi_Browser widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Multi_Browser::~Fl_Multi_Browser()

The destructor also deletes all the items in the list.

int Fl_Browser::deselect()

Deselects all lines.

int Fl_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

Selects one or more lines or gets the current selection state of a line.

FLTK 1.0.11 Programming Manual

class Fl_Multi_Browser 163

int Fl_Browser::value() const
void Fl_Browser::value(int)

Selects a single line or gets the last toggled line. This returns zero if no line has been toggled, so be aware
that this can happen in a callback.

FLTK 1.0.11 Programming Manual

164 class Fl_Multi_Browser

class Fl_Multiline_Input

Class Hierarchy

Fl_Input
 |
 +−−−−Fl_Multiline_Input

Include Files

#include <FL/Fl_Multiline_Input.H>

Description

This input field displays '\n' characters as new lines rather than ^J, and accepts the Return, Tab, and up and
down arrow keys. This is for editing multiline text.

This is far from the nirvana of text editors, and is probably only good for small bits of text, 10 lines at most. I
think FLTK can be used to write a powerful text editor, but it is not going to be a built−in feature. Powerful
text editors in a toolkit are a big source of bloat.

Methods

Fl_Multiline_Input•
~Fl_Multiline_Input•

Fl_Multiline_Input::Fl_Multiline_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Multiline_Input widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Multiline_Input::~Fl_Multiline_Input()

Destroys the widget and any value associated with it.

FLTK 1.0.11 Programming Manual

class Fl_Multiline_Input 165

class Fl_Multiline_Output

Class Hierarchy

Fl_Output
 |
 +−−−−Fl_Multiline_Output

Include Files

#include <FL/Fl_Multiline_Output.H>

Description

This widget is a subclass of Fl_Output that displays multiple lines of text. It also displays tab characters as
whitespace to the next column.

Methods

Fl_Multiline_Output•
~Fl_Multiline_Output•

Fl_Multiline_Output::Fl_Multiline_Output(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Multiline_Output widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Multiline_Output::~Fl_Multiline_Output()

Destroys the widget and any value associated with it.

FLTK 1.0.11 Programming Manual

166 class Fl_Multiline_Output

class Fl_Output

Class Hierarchy

Fl_Input_
 |
 +−−−−Fl_Output
 |
 +−−−− Fl_Multiline_Output

Include Files

#include <FL/Fl_Output.H>

Description

This widget displays a piece of text. When you set the value() , Fl_Output does a strcpy() to it's
own storage, which is useful for program−generated values. The user may select portions of the text using the
mouse and paste the contents into other fields or programs.

There is a single subclass, Fl_Multiline_Output, which allows you to display multiple lines of text.

The text may contain any characters except \0, and will correctly display anything, using ^X notation for
unprintable control characters and \nnn notation for unprintable characters with the high bit set. It assummes
the font can draw any characters in the ISO−Latin1 character set.

Methods

Fl_Output•
~Fl_Output•
cursor_color•
index•
size•
textcolor•
textfont•
textsize•
value•

FLTK 1.0.11 Programming Manual

class Fl_Output 167

Fl_Output::Fl_Output(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Output widget using the given position, size, and label string. The default boxtype is
FL_DOWN_BOX.

virtual Fl_Output::~Fl_Output()

Destroys the widget and any value associated with it.

const char *Fl_Output::value() const
int Fl_Output::value(const char*)
int Fl_Output::value(const char*, int)

The first form returns the current value, which is a pointer to the internal buffer and is valid only until the
value is changed.

The second two forms change the text and set the mark and the point to the end of it. The string is copied to
the internal buffer. Passing NULL is the same as "". This returns non−zero if the new value is different than
the current one. You can use the second version to directly set the length if you know it already or want to put
nul's in the text.

int Fl_Output::size() const

Returns the number of characters in value(). This may be greater than strlen(value()) if there are
nul characters in it.

char Fl_Output::index(int) const

Same as value()[n], but may be faster in plausible implementations. No bounds checking is done.

Fl_Color Fl_Output::textcolor() const
void Fl_Output::textcolor(Fl_Color)

Gets or sets the color of the text in the input field.

Fl_Font Fl_Output::textfont() const
void Fl_Output::textfont(Fl_Font)

Gets or sets the font of the text in the input field.

uchar Fl_Output::textsize() const
void Fl_Output::textsize(uchar)

Gets or sets the size of the text in the input field.

FLTK 1.0.11 Programming Manual

168 class Fl_Output

class Fl_Overlay_Window

Class Hierarchy

Fl_Double_Window
 |
 +−−−−Fl_Overlay_Window

Include Files

#include <FL/Fl_Overlay_Window.H>

Description

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image. The overlay is designed to be a rapidly−changing but simple graphic such as
a mouse selection box. Fl_Overlay_Window uses the overlay planes provided by your graphics hardware
if they are available.

If no hardware support is found the overlay is simulated by drawing directly into the on−screen copy of the
double−buffered window, and "erased" by copying the backbuffer over it again. This means the overlay will
blink if you change the image in the window.

Methods

Fl_Overlay_Window•
~Fl_Overlay_Window•
draw_overlay•
redraw_overlay•

Fl_Overlay_Window::Fl_Overlay_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Overlay_Window widget using the given position, size, and label (title) string.

virtual Fl_Overlay_Window::~Fl_Overlay_Window()

Destroys the window and all child widgets.

virtual void Fl_Overlay_Window::draw_overlay() = 0

You must subclass Fl_Overlay_Window and provide this method. It is just like a draw() method,
except it draws the overlay. The overlay will have already been "cleared" when this is called. You can use
any of the routines described in <FL/fl_draw.H>.

void Fl_Overlay_Window::redraw_overlay()

Call this to indicate that the overlay data has changed and needs to be redrawn. The overlay will be clear until
the first time this is called, so if you want an initial display you must call this after calling show().

FLTK 1.0.11 Programming Manual

class Fl_Overlay_Window 169

class Fl_Pack

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Pack

Include Files

#include <FL/Fl_Pack.H>

Description

This widget was designed to add the functionality of compressing and aligning widgets.

If type() is FL_HORIZONTAL all the children are resized to the height of the Fl_Pack, and are moved
next to each other horizontally. If type() is not FL_HORIZONTAL then the children are resized to the
width and are stacked below each other. Then the Fl_Pack resizes itself to surround the child widgets.

This widget is needed for the Fl_Tab. In addition you may want to put the Fl_Pack inside an Fl_Scroll
.

Methods

Fl_Pack•
~Fl_Pack•
add•

add_resizeable•
array•
begin•

child•
children•
current•

end•
find•
insert•

remove•
resizeable•

Fl_Pack::Fl_Pack(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Pack widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Pack::~Fl_Pack()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Pack and all of it's
children can be automatic (local) variables, but you must declare the Fl_Packfirst, so that it is destroyed
last.

int Fl_Pack::spacing() const
void Fl_Pack::spacing(int)

Gets or sets the number of extra pixels of blank space that are added between the children.

FLTK 1.0.11 Programming Manual

170 class Fl_Pack

class Fl_Positioner

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Positioner

Include Files

#include <FL/Fl_Positioner.H>

Description

This class is provided for Forms compatibility. It provides 2D input. It would be useful if this could be put
atop another widget so that the crosshairs are on top, but this is not implemented. The color of the crosshairs
is selection_color().

Methods

Fl_Positioner•
~Fl_Positioner•
value•
xbounds•
xstep•
xvalue•
ybounds•
ystep•
yvalue•

Fl_Positioner::Fl_Positioner(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Positioner widget using the given position, size, and label string. The default boxtype
is FL_NO_BOX.

virtual Fl_Positioner::~Fl_Positioner()

Deletes the widget.

FLTK 1.0.11 Programming Manual

class Fl_Positioner 171

void Fl_Positioner::value(float *x, float *y) const

Returns the current position in x and y.

void xbounds(float *xmin, float *xmax)
void xbounds(float xmin, float xmax)

Gets or sets the X axis bounds.

void xstep(float x)

Sets the stepping value for the X axis.

float Fl_Positioner::xvalue(void) const
void Fl_Positioner::xvalue(float x)

Gets or sets the X axis coordinate.

void ybounds(float *ymin, float *ymay)
void ybounds(float ymin, float ymay)

Gets or sets the Y axis bounds.

void ystep(float y)

Sets the stepping value for the Y axis.

float Fl_Positioner::yvalue(void) const
void Fl_Positioner::yvalue(float y)

Gets or sets the Y axis coordinate.

FLTK 1.0.11 Programming Manual

172 class Fl_Positioner

class Fl_Repeat_Button

Class Hierarchy

Fl_Button
 |
 +−−−−Fl_Repeat_Button

Include Files

#include <FL/Fl_Repeat_Button.H>

Description

The Fl_Repeat_Button is a subclass of Fl_Button that generates a callback when it is pressed and
then repeatedly generates callbacks as long as it is held down. The speed of the repeat is fixed and depends on
the implementation.

Methods

Fl_Repeat_Button•
~Fl_Repeat_Button•

Fl_Repeat_Button::Fl_Repeat_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Repeat_Button widget using the given position, size, and label string. The default
boxtype is FL_UP_BOX .

virtual Fl_Repeat_Button::~Fl_Repeat_Button()

Deletes the button.

FLTK 1.0.11 Programming Manual

class Fl_Repeat_Button 173

class Fl_Return_Button

Class Hierarchy

Fl_Button
 |
 +−−−−Fl_Return_Button

Include Files

#include <FL/Fl_Return_Button.H>

Description

The Fl_Return_Button is a subclass of Fl_Button that generates a callback when it is pressed or
when the user presses the Enter key. A carriage−return symbol is drawn next to the button label.

Methods

Fl_Return_Button•
~Fl_Return_Button•

Fl_Return_Button::Fl_Return_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Return_Button widget using the given position, size, and label string. The default
boxtype is FL_UP_BOX .

virtual Fl_Return_Button::~Fl_Return_Button()

Deletes the button.

FLTK 1.0.11 Programming Manual

174 class Fl_Return_Button

class Fl_Roller

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Roller

Include Files

#include <FL/Fl_Roller.H>

Description

The Fl_Roller widget is a "dolly" control commonly used to move 3D objects.

Methods

Fl_Roller•
~Fl_Roller•

Fl_Roller::Fl_Roller(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Roller widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Roller::~Fl_Roller()

Destroys the valuator.

FLTK 1.0.11 Programming Manual

class Fl_Roller 175

class Fl_Round_Button

Class Hierarchy

Fl_Button
 |
 +−−−−Fl_Round_Button

Include Files

#include <FL/Fl_Round_Button.H>

Description

Buttons generate callbacks when they are clicked by the user. You control exactly when and how by
changing the values for type() and when().

The Fl_Round_Button subclass display the "on" state by turning on a light, rather than drawing pushed
in. The shape of the "light" is initially set to FL_ROUND_DOWN_BOX. The color of the light when on is
controlled with selection_color(), which defaults to FL_RED.

Methods

Fl_Round_Button•
~Fl_Round_Button•

Fl_Round_Button::Fl_Round_Button(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Round_Button widget using the given position, size, and label string.

Fl_Round_Button::~Fl_Round_Button()

The destructor deletes the check button.

FLTK 1.0.11 Programming Manual

176 class Fl_Round_Button

class Fl_Scroll

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Scroll

Include Files

#include <FL/Fl_Scroll.H>

Description

This container widget lets you maneuver around a set of widgets much larger than your window. If the child
widgets are larger than the size of this object then scrollbars will appear so that you can scroll over to them:

If all of the child widgets are packed together into a solid rectangle then you want to set box() to
FL_NO_BOX or one of the _FRAME types. This will result in the best output. However, if the child widgets
are a sparse arrangment you must set box() to a real _BOX type. This can result in some blinking during
redrawing, but that can be solved by using a Fl_Double_Window.

This widget can also be used to pan around a single child widget "canvas". This child widget should be of
your own class, with a draw() method that draws the contents. The scrolling is done by changing the
x() and y() of the widget, so this child must use the x() and y() to position it's drawing. To speed up
drawing it should test fl_clip() .

Another very useful child is a single Fl_Pack, which is itself a group that packs it's children together and
changes size to surround them. Filling the Fl_Pack with Fl_Tab groups (and then putting normal widgets
inside those) gives you a very powerful scrolling list of individually−openable panels.

Fluid lets you create these, but you can only lay out objects that fit inside the Fl_Scroll without scrolling.
Be sure to leave space for the scrollbars, as Fluid won't show these either.

You cannot use Fl_Window as a child of this since the clipping is not conveyed to it when drawn, and it will
draw over the scrollbars and neighboring objects.

FLTK 1.0.11 Programming Manual

class Fl_Scroll 177

Methods

Fl_Scroll•
~Fl_Scroll•
align•
position•
type•
xposition•
yposition•

Fl_Scroll::Fl_Scroll(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Scroll widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Scroll::~Fl_Scroll()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Scroll and all of it's
children can be automatic (local) variables, but you must declare the Fl_Scrollfirst, so that it is destroyed
last.

void Fl_Widget::type(int)

By default you can scroll in both directions, and the scrollbars disappear if the data will fit in the area of the
scroll. type() can change this:

0 − No scrollbars •
Fl_Scroll::HORIZONTAL − Only a horizontal scrollbar. •
Fl_Scroll::VERTICAL − Only a vertical scrollbar. •
Fl_Scroll::BOTH − The default is both scrollbars. •
Fl_Scroll::HORIZONTAL_ALWAYS − Horizontal scrollbar always on, vertical always off. •
Fl_Scroll::VERTICAL_ALWAYS − Vertical scrollbar always on, horizontal always off. •
Fl_Scroll::BOTH_ALWAYS − Both always on. •

void Fl_Scroll::scrollbar.align(int)
void Fl_Scroll::hscrollbar.align(int)

This is used to change what side the scrollbars are drawn on. If the FL_ALIGN_LEFT bit is on, the vertical
scrollbar is on the left. If the FL_ALIGN_TOP bit is on, the horizontal scrollbar is on the top.

int Fl_Scroll::xposition() const

Gets the current horizontal scrolling position.

int Fl_Scroll::yposition() const

Gets the current vertical scrolling position.

FLTK 1.0.11 Programming Manual

178 class Fl_Scroll

void Fl_Scroll::position(int w, int h)

Sets the upper−lefthand corner of the scrolling region.

FLTK 1.0.11 Programming Manual

class Fl_Scroll 179

class Fl_Scrollbar

Class Hierarchy

Fl_Slider
 |
 +−−−−Fl_Scrollbar

Include Files

#include <FL/Fl_Scrollbar.H>

Description

The Fl_Scrollbar widget displays a slider with arrow buttons at the ends of the scrollbar. Clicking on the
arrows move up/left and down/right by linesize(). Scrollbars also accept FL_SHORTCUT events: the
arrows move by linesize(), and vertical scrollbars take Page Up/Down (they move by the page size
minus linesize()) and Home/End (they jump to the top or bottom).

Scrollbars have step(1) preset (they always return integers). If desired you can set the step() to
non−integer values. You will then have to use casts to get at the floating−point versions of value() from
Fl_Slider.

Methods

Fl_Scrollbar•
~Fl_Scrollbar•
linesize•
value•

Fl_Scrollbar::Fl_Scrollbar(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Scrollbar widget using the given position, size, and label string. You need to do
type(FL_HORIZONTAL) if you want a horizontal scrollbar.

virtual Fl_Scrollbar::~Fl_Scrollbar()

Destroys the valuator.

int Fl_Scrollbar::linesize() const
void Fl_Scrollbar::linesize(int i)

This number controls how big the steps are that the arrow keys do. In addition page up/down move by the
size last sent to value() minus one linesize(). The default is 16.

int Fl_Scrollbar::value()
int Fl_Scrollbar::value(int position, int size, int top, int total)

FLTK 1.0.11 Programming Manual

180 class Fl_Scrollbar

The first form returns the integer value of the scrollbar. You can get the floating point value with
Fl_Slider::value(). The second form sets value(), range(), and slider_size() to make a
variable−sized scrollbar. You should call this every time your window changes size, your data changes size,
or your scroll position changes (even if in response to a callback from this scrollbar). All necessary calls to
redraw() are done.

FLTK 1.0.11 Programming Manual

class Fl_Scrollbar 181

class Fl_Secret_Input

Class Hierarchy

Fl_Input
 |
 +−−−−Fl_Secret_Input

Include Files

#include <FL/Fl_Secret_Input.H>

Description

The Fl_Secret_Input class is a subclass of Fl_Input that displays its input as a string of asterisks.
This subclass is usually used to recieve passwords and other "secret" information.

Methods

Fl_Secret_Input•
~Fl_Secret_Input•

Fl_Secret_Input::Fl_Secret_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Secret_Input widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Secret_Input::~Fl_Secret_Input()

Destroys the widget and any value associated with it.

FLTK 1.0.11 Programming Manual

182 class Fl_Secret_Input

class Fl_Select_Browser

Class Hierarchy

Fl_Browser
 |
 +−−−−Fl_Select_Browser

Include Files

#include <FL/Fl_Select_Browser.H>

Description

The Fl_Select_Browser class is a subclass of Fl_Browser which lets the user select a single item, or
no items by clicking on the empty space. As long as the mouse button is held down the item pointed to by it
is highlighted. Normally the callback is done when the user presses the mouse, but you can change this with
when().

See Fl_Browser for methods to add and remove lines from the browser.

Methods

Fl_Select_Browser•
~Fl_Select_Browser•
deselect•
select•
value•

Fl_Select_Browser::Fl_Select_Browser(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Select_Browser widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Select_Browser::~Fl_Select_Browser()

The destructor also deletes all the items in the list.

int Fl_Browser::deselect()

Same as value(0).

int Fl_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

You can use these for compatibility with Fl_Multi_Browser. If you turn on the selection of more than
one line the results are unpredictable.

FLTK 1.0.11 Programming Manual

class Fl_Select_Browser 183

int Fl_Browser::value() const

Returns the number of the highlighted item, or zero if none. Notice that this is going to be zero except
during a callback!

FLTK 1.0.11 Programming Manual

184 class Fl_Select_Browser

class Fl_Single_Window

Class Hierarchy

Fl_Window
 |
 +−−−−Fl_Single_Window

Include Files

#include <FL/Fl_Single_Window.H>

Description

This is the same as Fl_Window. However, it is possible that some implementations will provide
double−buffered windows by default. This subclass can be used to force single−buffering. This may be useful
for modifying existing programs that use incremental update, or for some types of image data, such as a
movie flipbook.

Methods

Fl_Single_Window•
~Fl_Single_Window•

Fl_Single_Window::Fl_Single_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Single_Window widget using the given position, size, and label (title) string.

virtual Fl_Single_Window::~Fl_Single_Window()

Destroys the window and all child widgets.

FLTK 1.0.11 Programming Manual

class Fl_Single_Window 185

class Fl_Slider

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Slider
 |
 +−−−− Fl_Scrollbar, Fl_Value_Slider

Include Files

#include <FL/Fl_Slider.H>

Description

The Fl_Slider widget contains a sliding knob inside a box. It if often used as a scrollbar. Moving the box
all the way to the top/left sets it to the minimum(), and to the bottom/right to the maximum(). The
minimum() may be greater than the maximum() to reverse the slider direction.

Methods

Fl_Slider•
~Fl_Slider•
scrollvalue•
slider•
slider_size•
type•

Fl_Slider::Fl_Slider(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Slider widget using the given position, size, and label string. The default boxtype is
FL_DOWN_BOX.

virtual Fl_Slider::~Fl_Slider()

Destroys the valuator.

int Fl_Slider::scrollvalue(int windowtop, int windowsize, int first, int totalsize)

Returns Fl_Scrollbar::value().

Fl_Boxtype Fl_Slider::slider() const
void Fl_Slider::slider(Fl_Boxtype)

Set the type of box to draw for the moving part of the slider. The color of the moving part (or of the notch in
it for the nice sliders) is controlled by selection_color(). The default value of zero causes the slider to
figure out what to draw from box().

FLTK 1.0.11 Programming Manual

186 class Fl_Slider

float Fl_Slider::slider_size() const
void Fl_Slider::slider_size(float)

Get or set the dimensions of the moving piece of slider. This is the fraction of the size of the entire widget. If
you set this to 1 then the slider cannot move. The default value is .08.

For the "fill" sliders this is the size of the area around the end that causes a drag effect rather than causing the
slider to jump to the mouse.

uchar Fl_Widget::type() const
void Fl_Widget::type(uchar t)

Setting this changes how the slider is drawn, which can be one of the following:

FL_VERTICAL − Draws a vertical slider (this is the default). •
FL_HORIZONTAL − Draws a horizontal slider. •
FL_VERT_FILL_SLIDER − Draws a filled vertical slider, useful as a progress or value meter. •
FL_HOR_FILL_SLIDER − Draws a filled horizontal slider, useful as a progress or value meter. •
FL_VERT_NICE_SLIDER − Draws a vertical slider with a nice looking control knob. •
FL_HOR_NICE_SLIDER − Draws a horizontal slider with a nice looking control knob. •

FLTK 1.0.11 Programming Manual

class Fl_Slider 187

class Fl_Tabs

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Tabs

Include Files

#include <FL/Fl_Tabs.H>

Description

The Fl_Tabs widget is the "file card tabs" interface that allows you to put lots and lots of buttons and
switches in a panel, as popularized by many toolkits.

Clicking the tab makes a child visible() (by calling show() on it) and all other children are invisible (by
calling hide() on them). Usually the children are Fl_Group widgets containing several widgets
themselves.

Each child makes a card, and it's label() is printed on the card tab (including the label font and style). The
color of that child is used to color the card as well. Currently this only draws nicely if you set box() to the
default FL_THIN_UP_BOX or to FL_FLAT_BOX, which gets rid of the edges drawn on the sides and
bottom.

The size of the tabs is controlled by the bounding box of the children (there should be some space between
the children and the edge of the Fl_Tabs), and the tabs may be placed "inverted" on the bottom, this is
determined by which gap is larger. It is easiest to lay this out in fluid, using the fluid browser to select each
child group and resize them until the tabs look the way you want them to.

Methods

Fl_Tab•
~Fl_Tab•
value•

FLTK 1.0.11 Programming Manual

188 class Fl_Tabs

Fl_Tab::Fl_Tab(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Tab widget using the given position, size, and label string. The default boxtype is
FL_THIN_UP_BOX.

Use add(Fl_Widget *) to add each child (which is probably itself a Fl_Group). The children should
be sized to stay away from the top or bottom edge of the Fl_Tabs, which is where the tabs are drawn.

virtual Fl_Tab::~Fl_Tab()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tab and all of it's
children can be automatic (local) variables, but you must declare the Fl_Tabfirst, so that it is destroyed last.

Fl_Widget* Fl_Tabs::value() const
int Fl_Tabs::value(Fl_Widget*)

Gets or sets the currently visible widget/tab.

FLTK 1.0.11 Programming Manual

class Fl_Tabs 189

class Fl_Tile

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Tile

Include Files

#include <FL/Fl_Tile.H>

Description

The Fl_Tile class lets you resize the children by dragging the border between them:

Fl_Tile allows objects to be resized to zero dimensions. To prevent this you can use the
resizable() to limit where corners can be dragged to.

Even though objects can be resized to zero sizes, they must initially have non−zero sizes so the
Fl_Tile can figure out their layout. If desired, call position() after creating the children but before
displaying the window to set the borders where you want.

The "borders" are part of the children, an Fl_Tile does not draw any graphics of it's own. In the above
example all the final children have FL_DOWN_BOX types, and the "ridges" you see are two adjacent
FL_DOWN_BOX's drawn next to each other.

Methods

Fl_Tile•
~Fl_Tile•
position•
resizeable•

FLTK 1.0.11 Programming Manual

190 class Fl_Tile

Fl_Tile::Fl_Tile(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Tile widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Tile::~Fl_Tile()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Tile and all of it's
children can be automatic (local) variables, but you must declare the Fl_Tile first, so that it is destroyed
last.

void Fl_Tile::position(from_x, from_y, to_x, to_y)

Drag the intersection at from_x,from_y to to_x,to_y. This redraws all the necessary children.

void Fl_Tile::resizable(Fl_Widget &w)
void Fl_Tile::resizable(Fl_Widget *w)

The "resizable" child widget (which should be invisible) limits where the border can be dragged to. If you
don't set it, it will be possible to drag the borders right to the edge, and thus resize objects on the edge to zero
width or height. The resizable() widget is not resized by dragging any borders.

FLTK 1.0.11 Programming Manual

class Fl_Tile 191

class Fl_Timer

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Timer

Include Files

#include <FL/Fl_Timer.H>

Description

This is provided only to emulate the Forms Timer widget. It works by making a timeout callback every 1/5
second. This is wasteful and inaccurate if you just want something to happen a fixed time in the future. You
should directly call Fl::add_timeout() instead.

Methods

Fl_Timer•
~Fl_Timer•
direction•
suspended•
value•

Fl_Timer::Fl_Timer(uchar type, int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Timer widget using the given type, position, size, and label string. The type parameter
can be any of the following symbolic constants:

FL_NORMAL_TIMER − The timer just does the callback and displays the string "Timer" in the
widget.

•

FL_VALUE_TIMER − The timer does the callback and displays the current timer value in the
widget.

•

FL_HIDDEN_TIMER − The timer just does the callback and does not display anything. •

virtual Fl_Timer::~Fl_Timer()

Destroys the timer and removes the timeout.

char direction() const
void direction(char d)

Gets or sets the direction of the timer. If the direction is zero then the timer will count up, otherwise it will
count down from the initial value().

FLTK 1.0.11 Programming Manual

192 class Fl_Timer

char suspended() const
void suspended(char d)

Gets or sets whether the timer is suspended.

float value() const
void value(float)

Gets or sets the current timer value.

FLTK 1.0.11 Programming Manual

class Fl_Timer 193

class Fl_Valuator

Class Hierarchy

Fl_Widget
 |
 +−−−−Fl_Valuator
 |
 +−−−− Fl_Adjuster, Fl_Counter, Fl_Dial, Fl_Roller,

Fl_Slider, Fl_Value_Input, Fl_Value_Output,

Include Files

#include <FL/Fl_Valuator.H>

Description

The Fl_Valuator class controls a single floating−point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

There are probably more of these classes in FLTK than any others:

FLTK 1.0.11 Programming Manual

194 class Fl_Valuator

In the above diagram each box surrounds an actual subclass. These are further differentiated by setting the
type() of the widget to the symbolic value labeling the widget. The ones labelled "0" are the default
versions with a type(0). For consistency the symbol FL_VERTICAL is defined as zero.

Methods

Fl_Valuator•
~Fl_Valuator•
changed•

clamp•
clear_changed•
format•

increment•
maximum•
minimum•

range•
round•
set_changed•

step•
value•

Fl_Valuator::Fl_Valuator(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Valuator widget using the given position, size, and label string. The default boxtype is
FL_NO_BOX.

virtual Fl_Valuator::~Fl_Valuator()

Destroys the valuator.

double Fl_Valuator::value() const
int Fl_Valuator::value(double)

Get or set the current value. The new value is not clamped or otherwise changed before storing it. Use
clamp() or round() to modify the value before calling this if you want. If the new value is different than
the current one the object is redrawn. The initial value is zero.

double Fl_Valuator::minimum() const
void Fl_Valuator::minimum(double)

Gets or sets the minimum value for the valuator.

double Fl_Valuator::maximum() const
void Fl_Valuator::maximum(double)

Gets or sets the maximum value for the valuator.

void Fl_Valuator::range(double min, double max);

Sets the minimum and maximum values for the valuator. When the user manipulates the widget, the value is
limited to this range. This clamping is done after rounding to the step value (this makes a difference if the
range is not a multiple of the step).

The minimum may be greater than the maximum. This has the effect of "reversing" the object so the larger
values are in the opposite direction. This also switches which end of the filled sliders is filled.

Some widgets consider this a "soft" range. This means they will stop at the range, but if the user releases and
grabs the control again and tries to move it further, it is allowed.

The range may affect the display. You must redraw() the widget after changing the range.

FLTK 1.0.11 Programming Manual

class Fl_Valuator 195

double Fl_Valuator::step() const
void Fl_Valuator::step(double)
void Fl_Valuator::step(int A, int B)

Get or set the step value. As the user moves the mouse the value is rounded to the nearest multiple of the step
value. This is done before clamping it to the range. For most objects the default step is zero.

For precision the step is stored as the ratio of two integers, A/B. You can set these integers directly. Currently
setting a floating point value sets the nearest A/1 or 1/B value possible.

int Fl_Valuator::format(char *)

Format the passed value to show enough digits so that for the current step value. If the step has been set to
zero then it does a %g format. The characters are written into the passed buffer.

double Fl_Valuator::round(double)

Round the passed value to the nearest step increment. Does nothing if step is zero.

double Fl_Valuator::clamp(double)

Clamp the passed value to the valuator range.

double Fl_Valuator::increment(double,int n)

Adds n times the step value to the passed value. If step was set to zero it uses fabs(maximum() −
minimum()) / 100.

int Fl_Widget::changed() const

This value is true if the user has moved the slider. It is turned off by value(x) and just before doing a
callback (the callback can turn it back on if desired).

void Fl_Widget::set_changed()

Sets the changed() flag.

void Fl_Widget::clear_changed()

Clears the changed() flag.

FLTK 1.0.11 Programming Manual

196 class Fl_Valuator

class Fl_Value_Input

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Value_Input

Include Files

#include <FL/Fl_Value_Input.H>

Description

The Fl_Value_Input widget displays a floating point value. The user can click in the text field and edit it
(there is in fact a hidden Fl_Input widget with type(FL_FLOAT_INPUT) in there), and when they hit
return or tab the value updates to what they typed and the callback is done.

If step() is not zero, the user can also drag the mouse across the object and thus slide the value. The left
button moves one step() per pixel, the middle by 10 * step(), and the left button by 100 *
step(). It is then impossible to select text by dragging across it, although clicking can still move the
insertion cursor.

Methods

Fl_Value_Input•
~Fl_Value_Input•
cursor_color•
soft•
textcolor•
textfont•
textsize•

Fl_Value_Input::Fl_Value_Input(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Value_Input widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX.

virtual Fl_Value_Input::~Fl_Value_Input()

Destroys the valuator.

Fl_Color Fl_Value_Input::cursor_color() const
void Fl_Value_Input::cursor_color(Fl_Color)

Get or set the color of the cursor. This is black by default.

FLTK 1.0.11 Programming Manual

class Fl_Value_Input 197

uchar Fl_Value_Input::soft() const
void Fl_Value_Input::soft(uchar)

If "soft" is turned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is true.

Fl_Color Fl_Value_Input::textcolor() const
void Fl_Value_Input::textcolor(Fl_Color)

Gets or sets the color of the text in the value box.

Fl_Font Fl_Value_Input::textfont() const

void Fl_Value_Input::textfont(Fl_Font)

Gets or sets the typeface of the text in the value box.

uchar Fl_Value_Input::textsize() const
void Fl_Value_Input::textsize(uchar)

Gets or sets the size of the text in the value box.

FLTK 1.0.11 Programming Manual

198 class Fl_Value_Input

class Fl_Value_Output

Class Hierarchy

Fl_Valuator
 |
 +−−−−Fl_Value_Output

Include Files

#include <FL/Fl_Value_Output.H>

Description

The Fl_Value_Output widget displays a floating point value. If step() is not zero, the user can adjust
the value by dragging the mouse left and right. The left button moves one step() per pixel, the middle by
10 * step(), and the right button by 100 * step().

This is much lighter−weight than Fl_Value_Input because it contains no text editing code or character
buffer.

Methods

Fl_Value_Output•
~Fl_Value_Output•
soft•
textcolor•
textfont•
textsize•

Fl_Value_Output::Fl_Value_Output(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Value_Output widget using the given position, size, and label string. The default
boxtype is FL_NO_BOX .

virtual Fl_Value_Output::~Fl_Value_Output()

Destroys the valuator.

uchar Fl_Value_Output::soft() const
void Fl_Value_Output::soft(uchar)

If "soft" is turned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is one.

Fl_Color Fl_Value_Output::textcolor() const
void Fl_Value_Output::textcolor(Fl_Color)

Gets or sets the color of the text in the value box.

FLTK 1.0.11 Programming Manual

class Fl_Value_Output 199

Fl_Font Fl_Value_Output::textfont() const

void Fl_Value_Output::textfont(Fl_Font)

Gets or sets the typeface of the text in the value box.

uchar Fl_Value_Output::textsize() const
void Fl_Value_Output::textsize(uchar)

Gets or sets the size of the text in the value box.

FLTK 1.0.11 Programming Manual

200 class Fl_Value_Output

class Fl_Value_Slider

Class Hierarchy

Fl_Slider
 |
 +−−−−Fl_Value_Slider

Include Files

#include <FL/Fl_Value_Slider.H>

Description

The Fl_Value_Slider widget is a Fl_Slider widget with a box displaying the current value.

Methods

Fl_Value_Slider•
~Fl_Value_Slider•
textcolor•
textfont•
textsize•

Fl_Value_Slider::Fl_Value_Slider(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Value_Slider widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX .

virtual Fl_Value_Slider::~Fl_Value_Slider()

Destroys the valuator.

Fl_Color Fl_Value_Slider::textcolor() const
void Fl_Value_Slider::textcolor(Fl_Color)

Gets or sets the color of the text in the value box.

FLTK 1.0.11 Programming Manual

class Fl_Value_Slider 201

Fl_Font Fl_Value_Slider::textfont() const

void Fl_Value_Slider::textfont(Fl_Font)

Gets or sets the typeface of the text in the value box.

uchar Fl_Value_Slider::textsize() const
void Fl_Value_Slider::textsize(uchar)

Gets or sets the size of the text in the value box.

FLTK 1.0.11 Programming Manual

202 class Fl_Value_Slider

class Fl_Widget

Class Hierarchy

Fl_Widget
 |
 +−−−− Fl_Box, Fl_Browser_, Fl_Button, Fl_Chart, Fl_Clock,

Fl_Free, Fl_Group, Fl_Input_, Fl_Menu_, Fl_Positioner,
Fl_Timer, Fl_Valuator

Include Files

#include <FL/Fl_Widget.H>

Description

Fl_Widget is the base class for all widgets in FLTK. You can't create one of these because the constructor
is not public. However you can subclass it.

All "property" accessing methods, such as color(), parent(), or argument() are implemented as
trivial inline functions and thus are as fast and small as accessing fields in a structure. Unless otherwise
noted, the property setting methods such as color(n) or label(s) are also trivial inline functions, even if
they change the widget's appearance. It is up to the user code to call redraw() after these.

Methods

Fl_Widget•
~Fl_Widget•
activate•
active•
active_r•
align•
argument•
box•
callback•

changed•
clear_changed•
color•
contains•
damage•
deactivate•
default_callback•
do_callback•
h•

hide•
inside•
label•
labelcolor•
labelfont•
labelsize•
labeltype•
output•
parent•

position•
redraw•
resize•
selection_color•
set_changed•
show•
size•
take_focus•
takesevents•

type•
user_data•
visible•
visible_r•
w•
when•
window•
x•
y•

Fl_Widget::Fl_Widget(int x, int y, int w, int h, const char* label=0);

This is the protected constructor for an Fl_Widget, but all derived widgets have a matching public
constructor. It takes a value for x(), y(), w(), h(), and an optional value for label().

virtual Fl_Widget::~Fl_Widget();

Destroying single widgets is not very common. It is your responsibility to either remove() them from any
enclosing group, or to destroy that group immediately after destroying the children.

FLTK 1.0.11 Programming Manual

class Fl_Widget 203

uchar Fl_Widget::type() const;

This value is used for Forms compatability and to simulate RTTI.

short Fl_Widget::x() const
short Fl_Widget::y() const
short Fl_Widget::w() const
short Fl_Widget::h() const

The position of the upper−left corner of the widget in its enclosing Fl_Window (not its parent if that is not an
Fl_Window), and its width and height.

virtual void Fl_Widget::resize(int x, int y, int w, int h)
void Fl_Widget::position(short x, short y)
void Fl_Widget::size(short w, short h)

Change the size or position of the widget. This is a virtual function so the widget may implement its own
handling of resizing. The default version does not do redraw(), that is the parent widget's responsibility (this
is because the parent may know a faster way to update the display, such as scrolling from the old position).

position(x,y) is a shortcut for resize(x,y,w(),h()) , and size(w,h) is a shortcut for
resize(x(),y(),w,h) .

Fl_Window* Fl_Widget::window() const;

Return a pointer to the Fl_Window that this widget is in (it will skip any and all parent widgets between this
and the window). Returns NULL if none. Note: for an Fl_Window, this returns its parent window (if any),
not this window.

Fl_Boxtype Fl_Widget::box() const
void Fl_Widget::box(Fl_Boxtype)

The box() identifies a routine that draws the background of the widget. See Box Types for the available
types. The default depends on the widget, but is usually FL_NO_BOX or FL_UP_BOX.

Fl_Color Fl_Widget::color() const
void Fl_Widget::color(Fl_Color)

This color is passed to the box routine. Color is an index into an internal table of rgb colors. For most widgets
this defaults to FL_GRAY. See the enumeration list for predefined colors. Use Fl::set_color() to
redefine colors.

Fl_Color Fl_Widget::selection_color() const
void Fl_Widget::selection_color(Fl_Color)
void Fl_Widget::color(Fl_Color, Fl_Color)

For Forms compatibility a second color is defined. This is usually used to color the widget when it is
selected, although some widgets use this color for other purposes. You can set both colors at once with
color(a,b).

FLTK 1.0.11 Programming Manual

204 class Fl_Widget

const char* Fl_Widget::label() const
void Fl_Widget::label(const char*)

The label is printed somewhere on the widget or next to it. The string is not copied, the passed pointer is
stored unchanged in the widget.

void Fl_Widget::label(Fl_Labeltype, const char*)
uchar Fl_Widget::labeltype() const
void Fl_Widget::labeltype(Fl_Labeltype)

A labeltype identifies a routine that draws the label of the widget. This can be used for special effects
such as emboss, or to use the label() pointer as another form of data such as a bitmap. The value
FL_NORMAL_LABEL prints the label as text.

Fl_Align Fl_Widget::align() const
void Fl_Widget::align(Fl_Align)

How the label is printed next to or inside the widget. The default value is FL_ALIGN_CENTER, which
centers the label. The value can be any of these constants or'd together:

FL_ALIGN_CENTER•
FL_ALIGN_TOP•
FL_ALIGN_BOTTOM•
FL_ALIGN_LEFT•
FL_ALIGN_RIGHT•
FL_ALIGN_INSIDE•
FL_ALIGN_CLIP•
FL_ALIGN_WRAP•

Fl_Color Fl_Widget::labelcolor() const
void Fl_Widget::labelcolor(Fl_Color)

This color is passed to the labeltype routine, and is typically the color of the label text. This defaults to
FL_BLACK.

Fl_Font Fl_Widget::labelfont() const
void Fl_Widget::labelfont(Fl_Font)

Fonts are identified by small 8−bit indexes into a table. See the enumeration list for predefined typefaces. The
default value uses a Helvetica typeface (Arial for Microsoft® Windows®). The function
Fl::set_font() can define new typefaces.

uchar Fl_Widget::labelsize() const
void Fl_Widget::labelsize(uchar)

Fonts are further identified by a point size. The default is 14.

typedef void (Fl_Callback)(Fl_Widget*, void*)
Fl_Callback* Fl_Widget::callback() const
void Fl_Widget::callback(Fl_Callback*, void* = 0)

FLTK 1.0.11 Programming Manual

class Fl_Widget 205

Each widget has a single callback. You can set it or examine it with these methods.

void* Fl_Widget::user_data() const
void Fl_Widget::user_data(void*)

You can also just change the void * second argument to the callback with the user_data methods.

void Fl_Widget::callback(void (*)(Fl_Widget*, long), long = 0)
long Fl_Widget::argument() const
void Fl_Widget::argument(long)

For convenience you can also define the callback as taking a long argument. This is implemented by casting
this to a Fl_Callback and casting the long to a void * and may not be portable to some machines.

void Fl_Widget::callback(void (*)(Fl_Widget*))

For convenience you can also define the callback as taking only one argument. This is implemented by
casting this to a Fl_Callback and may not be portable to some machines.

void Fl_Widget::do_callback()
void Fl_Widget::do_callback(Fl_Widget*, void* = 0)
void Fl_Widget::do_callback(Fl_Widget*, long)

You can cause a widget to do its callback at any time, and even pass arbitrary arguments.

int Fl_Widget::changed() const
void Fl_Widget::set_changed()
void Fl_Widget::clear_changed()

Fl_Widget::changed() is a flag that is turned on when the user changes the value stored in the widget.
This is only used by subclasses of Fl_Widget that store values, but is in the base class so it is easier to scan
all the widgets in a panel and do_callback() on the changed ones in response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

Fl_When Fl_Widget::when() const
void Fl_Widget::when(Fl_When)

Fl_Widget::when() is a set of bitflags used by subclasses of Fl_Widget to decide when to do the
callback. If the value is zero then the callback is never done. Other values are described in the individual
widgets. This field is in the base class so that you can scan a panel and do_callback() on all the ones
that don't do their own callbacks in response to an "OK" button.

static void Fl_Widget::default_callback(Fl_Widget*, void*)

The default callback, which puts a pointer to the widget on the queue returned by Fl::readqueue() .
You may want to call this from your own callback.

FLTK 1.0.11 Programming Manual

206 class Fl_Widget

int Fl_Widget::visible() const
int Fl_Widget::visible_r() const
void Fl_Widget::show()
void Fl_Widget::hide()

An invisible widget never gets redrawn and does not get events. The visible() method returns true if the
widget is set to be visible.The visible_r() method returns true if the widget and all of its parents are
visible. A widget is only visible if visible() is true on it and all of its parents.

Changing it will send FL_SHOW or FL_HIDE events to the widget. Do not change it if the parent is not
visible, as this will send false FL_SHOW or FL_HIDE events to the widget. redraw() is called if necessary
on this or the parent.

int Fl_Widget::active() const
int Fl_Widget::active_r() const void Fl_Widget::activate() void Fl_Widget::deactivate()

Fl_Widget::active() returns whether the widget is active. Fl_Widget::active_r() returns
whether the widget and all of its parents are active. An inactive widget does not get any events, but it does get
redrawn. A widget is only active if active() is true on it and all of its parents.

Changing this value will send FL_ACTIVATE or FL_DEACTIVATE to the widget if active_r() is true.

Currently you cannot deactivate Fl_Window widgets.

int Fl_Widget::output() const
void Fl_Widget::set_output() void Fl_Widget::clear_output()

output() means the same as !active() except it does not change how the widget is drawn. The widget
will not recieve any events. This is useful for making scrollbars or buttons that work as displays rather than
input devices.

int Fl_Widget::takesevents() const

This is the same as (active() && visible() && !output()) but is faster.

void Fl_Widget::redraw()

Mark the widget as needing its draw() routine called.

uchar Fl_Widget::damage() const

Non−zero if draw() needs to be called. Actually this is a bit field that the widget subclass can use to figure
out what parts to draw.

Fl_Widget *Fl_Widget::parent() const

Returns a pointer to the parent widget. Usually this is a Fl_Group or Fl_Window. Returns NULL if none.

FLTK 1.0.11 Programming Manual

class Fl_Widget 207

int Fl_Widget::contains(Fl_Widget* b) const

Returns true if b is a child of this widget, or is equal to this widget. Returns false if b is NULL.

int Fl_Widget::inside(const Fl_Widget* a) const

Returns true if this is a child of a, or is equal to a . Returns false if a is NULL.

int Fl_Widget::take_focus()

Tries to make this widget be the Fl::focus() widget, by first sending it an FL_FOCUS event, and if it
returns non−zero, setting Fl::focus() to this widget. You should use this method to assign the focus to
an widget. Returns true if the widget accepted the focus.

FLTK 1.0.11 Programming Manual

208 class Fl_Widget

class Fl_Window

Class Hierarchy

Fl_Group
 |
 +−−−−Fl_Window
 |
 +−−−− Fl_Double_Window, Fl_Gl_Window,

Fl_Overlay_Window, Fl_Single_Window

Include Files

#include <FL/Fl_Window.H>

Description

This widget produces an actual window. This can either be a main window, with a border and title and all the
window management controls, or a "subwindow" inside a window. This is controlled by whether or not the
window has a parent().

Once you create a window, you usually add children Fl_Widget 's to it by using
window−>add(child) for each new widget. See Fl_Group for more information on how to add and
remove children.

There are several subclasses of Fl_Window that provide double−buffering, overlay, menu, and OpenGL
support.

The window's callback is done if the user tries to close a window using the window manager and
Fl::modal() is zero or equal to the window. Fl_Window has a default callback that calls
Fl_Window::hide() and calls exit(0) if this is the last top−level window.

Methods

Fl_Window•
~Fl_Window•
border•
clear_border•
current•
cursor•

free_position•
fullscreen•
fullscreen_off•
hide•
hotspot•

iconize•
iconlabel•
label•
make_current•
modal•

non_modal•
resize•
set_modal•
set_non_modal•
show•

shown•
size_range•
xclass•

Fl_Window::Fl_Window(int w, int h, const char *title = 0)

The first form of the constructor should be used for a "top−level" window (that is, one that is not inside
another window). It correctly sets visible() to false and parent() to NULL. By not specifying the
position of the window, the window system will pick a place to show the window or allow the user to pick a
location. If you want to force a position you should call position(x,y) or hotspot() before calling
show().

FLTK 1.0.11 Programming Manual

class Fl_Window 209

Fl_Widget::box() is set to FL_FLAT_BOX. If you plan to completely fill the window with children
widgets you should change this to FL_NO_BOX. If you turn the window border off you may want to change
this to FL_UP_BOX.

Fl_Window::Fl_Window(int x, int y, int w, int h, const char *title = 0)

The second form of the constructor is for creating child windows. It leaves visible() set to true.

virtual Fl_Window::~Fl_Window()

The destructor also deletes all the children. This allows a whole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done so the Fl_Window and all of it's
children can be automatic (local) variables, but you must declare the Fl_Window first so that it is destroyed
last.

void Fl_Window::size_range(int minw, int minh, int maxw=0, int maxh=0, int dw=0, int dh=0,
int aspect=0)

Set the allowable range the user can resize this window to. This only works for top−level windows.

minw and minh are the smallest the window can be. •
maxw and maxh are the largest the window can be. If either is equal to the minimum then you cannot
resize in that direction. If either is zero then FLTK picks a maximum size in that direction such that
the window will fill the screen.

•

dw and dh are size increments. The window will be constrained to widths of minw + N * dw,
where N is any non−negative integer. If these are less or equal to 1 they are ignored. (this is ignored
on WIN32)

•

aspect is a flag that indicates that the window should preserve it's aspect ratio. This only works if
both the maximum and minimum have the same aspect ratio. (ignored on WIN32 and by many X
window managers)

•

If this function is not called, FLTK tries to figure out the range from the setting of resizeable() :
If resizeable() is NULL (this is the default) then the window cannot be resized and the resize
border and max−size control will not be displayed for the window.

•

If either dimension of resizeable() is less than 100, then that is considered the minimum size.
Otherwise the resizeable() has a minimum size of 100.

•

If either dimension of resizeable() is zero, then that is also the maximum size (so the window
cannot resize in that direction).

•

It is undefined what happens if the current size does not fit in the constraints passed to size_range().

virtual void Fl_Window::show()
void Fl_Window::show(int argc, char **argv)

Put the window on the screen. Usually this has the side effect of opening the display. The second form is used
for top−level windows and allow standard arguments to be parsed from the command−line.

If the window is already shown then it is restored and raised to the top. This is really convenient because your
program can call show() at any time, even if the window is already up. It also means that show() serves
the purpose of raise() in other toolkits.

FLTK 1.0.11 Programming Manual

210 class Fl_Window

virtual void Fl_Window::hide()

Remove the window from the screen. If the window is already hidden or has not been shown then this does
nothing and is harmless.

int Fl_Window::shown() const

Returns non−zero if show() has been called (but not hide()). You can tell if a window is iconified with
(w−>shown() &!w−>visible()).

void Fl_Window::iconize()

Iconifies the window. If you call this when shown() is false it will show() it as an icon. If the window is
already iconified this does nothing.

Call show() to restore the window.

When a window is iconified/restored (either by these calls or by the user) the handle() method is called
with FL_HIDE and FL_SHOW events and visible() is turned on and off.

There is no way to control what is drawn in the icon except with the string passed to
Fl_Window::xclass(). You should not rely on window managers displaying the icons.

void Fl_Window::resize(int,int,int,int)

Change the size and position of the window. If shown() is true, these changes are communicated to the
window server (which may refuse that size and cause a further resize). If shown() is false, the size and
position are used when show() is called. See Fl_Group for the effect of resizing on the child widgets.

You can also call the Fl_Widget methods size(x,y) and position(w,h), which are inline wrappers
for this virtual function.

void Fl_Window::free_position()

Undoes the effect of a previous resize() or show() so that the next time show() is called the window
manager is free to position the window.

void Fl_Window::hotspot(int x, int y, int offscreen = 0)
void Fl_Window::hotspot(const Fl_Widget*, int offscreen = 0)
void Fl_Window::hotspot(const Fl_Widgetp, int offscreen = 0)

position() the window so that the mouse is pointing at the given position, or at the center of the given
widget, which may be the window itself. If the optional offscreen parameter is non−zero, then the
window is allowed to extend off the screen (this does not work with some X window managers).

void Fl_Window::fullscreen()

Makes the window completely fill the screen, without any window manager border visible. You must use
fullscreen_off() to undo this. This may not work with all window managers.

FLTK 1.0.11 Programming Manual

class Fl_Window 211

int Fl_Window::fullscreen_off(int x, int y, int w, int h)

Turns off any side effects of fullscreen() and does resize(x,y,w,h).

int Fl_Window::border(int)
uchar Fl_Window::border() const

Gets or sets whether or not the window manager border is around the window. The default value is true.
border(n) can be used to turn the border on and off, and returns non−zero if the value has been changed.
Under most X window managers this does not work after show() has been called, although SGI's 4DWM
does work.

void Fl_Window::clear_border()

clear_border() is a fast inline function to turn the border off. It only works before show() is called.

void Fl_Window::set_modal()

A "modal" window, when shown(), will prevent any events from being delivered to other windows in the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property). Several modal windows may be shown at once, in which case only the last one
shown gets events. You can see which window (if any) is modal by calling Fl::modal().

uchar Fl_Window::modal() const

Returns true if this window is modal.

void Fl_Window::set_non_modal()

A "non−modal" window (terminology borrowed from Microsoft Windows) acts like a modal() one in that
it remains on top, but it has no effect on event delivery. There are three states for a window: modal,
non−modal, and normal.

uchar Fl_Window::non_modal() const

Returns true if this window is modal or non−modal.

void Fl_Window::label(const char*)
const char* Fl_Window::label() const

Gets or sets the window title bar label.

void Fl_Window::iconlabel(const char*)
const char* Fl_Window::iconlabel() const

Gets or sets the icon label.

void Fl_Window::xclass(const char*)
const char* Fl_Window::xclass() const

FLTK 1.0.11 Programming Manual

212 class Fl_Window

A string used to tell the system what type of window this is. Mostly this identifies the picture to draw in the
icon. Under X, this is turned into a XA_WM_CLASS pair by truncating at the first non−alphanumeric
character and capitalizing the first character, and the second one if the first is 'x'. Thus "foo" turns into "foo,
Foo", and "xprog.1" turns into "xprog, XProg". This only works if called before calling show().

Under Microsoft Windows this string is used as the name of the WNDCLASS structure, though it is not clear
if this can have any visible effect.

void Fl_Window::make_current()

make_current() sets things up so that the drawing functions in <FL/fl_draw.H> will go into this
window. This is useful for incremental update of windows, such as in an idle callback, which will make your
program behave much better if it draws a slow graphic. Danger: incremental update is very hard to debug
and maintain!

This method only works for the Fl_Window and Fl_Gl_Window classes.

static Fl_Window* Fl_Window::current()

Returns the last window that was made current.

void Fl_Window::cursor(Fl_Cursor, Fl_Color = FL_WHITE, Fl_Color = FL_BLACK)

Change the cursor for this window. This always calls the system, if you are changing the cursor a lot you may
want to keep track of how you set it in a static varaible and call this only if the new cursor is different.

The type Fl_Cursor is an enumeration defined in <Enumerations.H>. (Under X you can get any
XC_cursor value by passing Fl_Cursor((XC_foo/2)+1)). The colors only work on X, they are not
implemented on WIN32.

FLTK 1.0.11 Programming Manual

class Fl_Window 213

FLTK 1.0.11 Programming Manual

214 class Fl_Window

B − Function Reference

This appendix describes all of the fl_ functions and Fl:: methods. For a description of the FLTK widgets,
see Appendix A.

Functions

int fl_color_chooser(const char *title, double &r, double &g, double &b)
int fl_color_chooser(const char *title, uchar &r, uchar &g, uchar &b)

The double version takes RGB values in the range 0.0 to 1.0. The uchar version takes RGB values in the
range 0 to 255. The title argument specifies the label (title) for the window.

B − Function Reference 215

fl_color_chooser() pops up a window to let the user pick an arbitrary RGB color. They can pick the
hue and saturation in the "hue box" on the left (hold down CTRL to just change the saturation), and the
brighness using the vertical slider. Or they can type the 8−bit numbers into the RGB Fl_Value_Input
fields, or drag the mouse across them to adjust them. The pull−down menu lets the user set the input fields to
show RGB, HSV, or 8−bit RGB (0 to 255).

This returns non−zero if the user picks ok, and updates the RGB values. If the user picks cancel or closes the
window this returns zero and leaves RGB unchanged.

If you use the color chooser on an 8−bit screen, it will allocate all the available colors, leaving you no space
to exactly represent the color the user picks! You can however use fl_rectf() to fill a region with a
simulated color using dithering.

int fl_show_colormap(int oldcol)

fl_show_colormap() pops up a panel of the 256 colors you can access with fl_color() and lets the
user pick one of them. It returns the new color index, or the old one if the user types ESC or clicks outside the
window.

void fl_message(const char *, ...)

Displays a printf−style message in a pop−up box with an "OK" button, waits for the user to hit the button.
The message will wrap to fit the window, or may be many lines by putting \n characters into it. The enter
key is a shortcut for the OK button.

FLTK 1.0.11 Programming Manual

216 Functions

void fl_alert(const char *, ...)

Same as fl_message() except for the "!" symbol.

int fl_ask(const char *, ...)

Displays a printf−style message in a pop−up box with an "Yes" and "No" button and waits for the user to hit
a button. The return value is 1 if the user hits Yes, 0 if they pick No. The enter key is a shortcut for Yes and
ESC is a shortcut for No.

int fl_choice(const char *q, const char *b0, const char *b1, const char
*b2, ...)

Shows the message with three buttons below it marked with the strings b0, b1, and b2. Returns 0, 1, or 2
depending on which button is hit. ESC is a shortcut for button 0 and the enter key is a shortcut for button 1.
Notice the buttons are positioned "backwards" You can hide buttons by passing NULL as their labels.

const char *fl_input(const char *label, const char *deflt = 0, ...)

Pops up a window displaying a string, lets the user edit it, and return the new value. The cancel button returns
NULL. The returned pointer is only valid until the next time fl_input() is called. Due to
back−compatability, the arguments to any printf commands in the label are after the default value.

FLTK 1.0.11 Programming Manual

Functions 217

const char *fl_password(const char *label, const char *deflt = 0, ...)

Same as fl_input() except an Fl_Secret_Input field is used.

void fl_message_font(Fl_Font fontid, uchar size)

Change the font and font size used for the messages in all the popups.

Fl_Widget *fl_message_icon()

Returns a pointer to the box at the left edge of all the popups. You can alter the font, color, or label (including
making it a Pixmap), before calling the functions.

char *fl_file_chooser(const char * message, const char *pattern, const
char *fname)

FLTK provides a "tab completion" file chooser that makes it easy to choose files from large directories. This
file chooser has several unique features, the major one being that the Tab key completes filenames like it does
in Emacs or tcsh, and the list always shows all possible completions.

FLTK 1.0.11 Programming Manual

218 Functions

 fl_file_chooser()

pops up the file chooser, waits for the user to pick a file or Cancel, and then returns a pointer to that filename
or NULL if Cancel is chosen.

message is a string used to title the window.

pattern is used to limit the files listed in a directory to those matching the pattern. This matching is done
by filename_match(). Use NULL to show all files.

fname is a default filename to fill in the chooser with. If this is NULL then the last filename that was
choosen is used (unless that had a different pattern, in which case just the last directory with no name is
used). The first time the file chooser is called this defaults to a blank string.

The returned value points at a static buffer that is only good until the next time fl_file_chooser() is
called.

void fl_file_chooser_callback(void (*cb)(const char *))

Set a function that is called every time the user clicks a file in the currently popped−up file chooser. This
could be used to preview the contents of the file. It has to be reasonably fast, and cannot create FLTK
windows.

int filename_list(const char *d, dirent ***list)

This is a portable and const−correct wrapper for the fl_scandir function. d is the name of a directory (it
does not matter if it has a trailing slash or not). For each file in that directory a "dirent" structure is created.
The only portable thing about a dirent is that dirent.d_name is the nul−terminated file name. An array of
pointers to these dirents is created and a pointer to the array is returned in *list. The number of entries is
given as a return value. If there is an error reading the directory a number less than zero is returned, and
errno has the reason (errno does not work under WIN32). The files are sorted in "alphanumeric" order,
where an attempt is made to put unpadded numbers in consecutive order.

You can free the returned list of files with the following code:

FLTK 1.0.11 Programming Manual

Functions 219

for (int i = return_value; i > 0;) free((void*)(list[−−i]));
free((void*)list);

int filename_isdir(const char *f)

Returns non−zero if the file exists and is a directory.

const char *filename_name(const char *f)

Returns a pointer to the character after the last slash, or to the start of the filename if there is none.

const char *filename_ext(const char *f)

Returns a pointer to the last period in filename_name(f), or a pointer to the trailing nul if none.

char *filename_setext(char *f, const char *ext)

Does strcpy(filename_ext(f), ext ? ext : ""). Returns a pointer to f.

int filename_expand(char *out, const char *in)

Splits in at each slash character. Replaces any occurrance of $X with getenv("X") (leaving it as $X if the
environment variable does not exist). Replaces any occurances of ~X with user X's home directory (leaving it
as ~X if the user does not exist). Any resulting double slashes cause everything before the second slash to be
deleted. Copies the result to out (in and out may be the same buffer). Returns non−zero if any changes
were made. In true retro programming style, it is up to you to provide a buffer big enough for the result. 1024
characters should be enough.

int filename_absolute(char *out, const char *in)

If in does not start with a slash, this prepends the current working directory to in and then deletes any
occurances of . and x/.. from the result, which it copies to out (in and out may be the same buffer).
Returns non−zero if any changes were made. In true retro programming style, it is up to you to provide a
buffer big enough for the result. 1024 characters should be enough.

int filename_match(const char *f, const char *pattern)

Returns true if f matches pattern. The following syntax is used by pattern:

* matches any sequence of 0 or more characters. •
? matches any single character. •
[set] matches any character in the set. Set can contain any single characters, or a−z to represent a
range. To match] or − they must be the first characters. To match ^ or ! they must not be the first
characters.

•

[^set] or [!set] matches any character not in the set. •
{X|Y|Z} or {X,Y,Z} matches any one of the subexpressions literally. •
\x quotes the character x so it has no special meaning. •
x all other characters must be matched exactly. •

FLTK 1.0.11 Programming Manual

220 Functions

Fl:: Methods

static void Fl::add_fd(int fd, void (*cb)(int, void *), void* = 0)
static void Fl::add_fd(int fd, int when, void (*cb)(int, void*), void* = 0)
static void Fl::remove_fd(int)

Add file descriptor fd to listen to. When the fd becomes ready for reading Fl::wait() will call the
callback and then return. The callback is passed the fd and the arbitrary void* argument.

The second version takes a when bitfield, with the bits FL_READ, FL_WRITE, and FL_EXCEPT defined, to
indicate when the callback should be done.

There can only be one callback of each type for a file descriptor. Fl::remove_fd() gets rid of all the
callbacks for a given file descriptor.

Under UNIX any file descriptor can be monitored (files, devices, pipes, sockets, etc.) Due to limitations in
Microsoft Windows, WIN32 applications can only monitor sockets.

static void Fl::add_handler(int (*f)(int))

Install a function to parse unrecognized events. If FLTK cannot figure out what to do with an event, it calls
each of these functions (most recent first) until one of them returns non−zero. If none of them returns non
zero then the event is ignored. Events that cause this to be called are:

FL_SHORTCUT events that are not recognized by any widget. This lets you provide global shortcut
keys.

•

System events that FLTK does not recognize. See fl_xevent. •
Some other events when the widget FLTK selected returns zero from its handle() method. Exactly
which ones may change in future versions, however.

•

static Fl::add_idle(void (*cb)(void*), void*)

Adds a callback function that is called every time by Fl::wait() and also makes it act as though the
timeout is zero (this makes Fl::wait() return immediately, so if it is in a loop it is called repeatedly, and
thus the idle fucntion is called repeatedly). The idle function can be used to get background processing done.

You can have multiple idle callbacks. To remove an idle callback use Fl::remove_idle().

Fl::wait() and Fl::check() call idle callbacks, but Fl::ready() does not.

The idle callback can call any FLTK functions, including Fl::wait(), Fl::check(), and
Fl::ready(). Fltk will not recursively call the idle callback.

static void Fl::add_timeout(float t, void (*cb)(void*),void*v=0)

Add a one−shot timeout callback. The function will be called by Fl::wait() at t seconds after this
function is called. The optional void* argument is passed to the callback.

FLTK 1.0.11 Programming Manual

Fl:: Methods 221

static void Fl::repeat_timeout(float t, void (*cb)(void*),void*v=0)

Inside a timeout callback you can call this to add another timeout. Rather than the time being measured from
"now", it is measured from when the system call elapsed that caused this timeout to be called. This will result
in far more accurate spacing of the timeout callbacks, it also has slightly less system call overhead. (It will
also use all your machine time if your timeout code and fltk's overhead take more than t seconds, as the real
timeout will be reduced to zero).

It is undefined what this does if called from outside a timeout callback.

This code will print "TICK" each second on stdout, with a fair degree of accuracy:

void callback(void*) {
 printf("TICK\n");
 Fl::repeat_timeout(1.0,callback);
}

main() {
 Fl::add_timeout(1.0,callback);
 return Fl::run();
}

static void Fl::add_check(void (*cb)(void*),void*v=0)

Fltk will call this callback just before it flushes the display and waits for events. This is different than an idle
callback because it is only called once, then fltk calls the system and tells it not to return until an event
happens.

This can be used by code that wants to monitor the application's state, such as to keep a display up to date.
The advantage of using a check callback is that it is called only when no events are pending. If events are
coming in quickly, whole blocks of them will be processed before this is called once. This can save
significant time and avoid the application falling behind the events.

Sample code:

bool state_changed; // anything that changes the display turns this on

void callback(void*) {
 if (!state_changed) return;
 state_changed = false;
 do_expensive_calculation();
 widget−>redraw();
}

main() {
 Fl::add_check(1.0,callback);
 return Fl::run();
}

static int Fl::arg(int argc, char **argv, int &i)

Consume a single switch from argv, starting at word i. Returns the number of words eaten (1 or 2, or 0 if it
is not recognized) and adds the same value to i. You can use this function if you prefer to control the
incrementing through the arguments yourself.

FLTK 1.0.11 Programming Manual

222 Fl:: Methods

static int Fl::args(int argc, char **argv, int &i, int (*callback)(int, char**,int
&)=0)
void Fl::args(int argc, char **argv)

FLTK provides an entirely optional command−line switch parser. You don't have to call it if you don't like
them! Everything it can do can be done with other calls to FLTK.

To use the switch parser, call Fl::args(...) near the start of your program. This does not open the
display, instead switches that need the display open are stashed into static variables. Then you must display
your first window by calling window−>show(argc,argv), which will do anything stored in the static variables.

callback lets you define your own switches. It is called with the same argc and argv, and with i the
index of each word. The callback should return zero if the switch is unrecognized, and not change i. It
should return non−zero if the switch is recognized, and add at least 1 to i (it can add more to consume words
after the switch). This function is called before any other tests, so you can override any FLTK switch (this is
why fltk can use very short switches instead of the long ones all other toolkits force you to use).

On return i is set to the index of the first non−switch. This is either:

The first word that does not start with '−'. •
The word '−' (used by many programs to name stdin as a file) •
The first unrecognized switch (return value is 0). •
argc•

The return value is i unless an unrecognized switch is found, in which case it is zero. If your program takes
no arguments other than switches you should produce an error if the return value is less than argc.

All switches except −bg2 may be abbreviated one letter and case is ignored:

−display host:n.n The X display to use (ignored under WIN32). •
−geometry WxH+X+Y The window position and size will be modified according the the standard
X geometry string.

•

−name string Fl_Window::xclass(string) will be done to the window, possibly changing its icon. •
−title string Fl_Window::label(string) will be done to the window, changing both its title and
the icontitle.

•

−iconic Fl_Window::iconize() will be done to the window. •
−bg color XParseColor is used to lookup the passed color and then Fl::background() is done.
Under WIN32 only color names of the form "#xxxxxx" are understood.

•

−bg2 color XParseColor is used to lookup the passed color and then Fl::background2() is done. •
−fg color XParseColor is used to lookup the passed color and then Fl::foreground() is done. •

The second form of Fl::args() is useful if your program does not have command line switches of its
own. It parses all the switches, and if any are not recognized it calls Fl::abort(Fl::help).

static void Fl::background(uchar, uchar, uchar)

Changes fl_color(FL_GRAY) to the given color, and changes the gray ramp from 32 to 56 to black to
white. These are the colors used as backgrounds by almost all widgets and used to draw the edges of all the
boxtypes.

FLTK 1.0.11 Programming Manual

Fl:: Methods 223

static void Fl::background2(uchar, uchar, uchar)

Changes fl_color(FL_WHITE) and the same colors as Fl::foreground(). This color is used as a
background by Fl_Input and other text widgets.

static Fl_Widget *Fl::belowmouse() const
static void Fl::belowmouse(Fl_Widget *)

Get or set the widget that is below the mouse. This is for highlighting buttons. It is not used to send
FL_PUSH or FL_MOVE directly, for several obscure reasons, but those events typically go to this widget.
This is also the first widget tried for FL_SHORTCUT events.

If you change the belowmouse widget, the previous one and all parents (that don't contain the new widget)
are sent FL_LEAVE events. Changing this does not send FL_ENTER to this or any widget, because sending
FL_ENTER is supposed to test if the widget wants the mouse (by it returning non−zero from handle()).

static int Fl::box_dh(Fl_Boxtype)

Returns the height offset for the given boxtype.

static int Fl::box_dw(Fl_Boxtype)

Returns the width offset for the given boxtype.

static int Fl::box_dx(Fl_Boxtype)

Returns the X offset for the given boxtype.

static int Fl::box_dy(Fl_Boxtype)

Returns the Y offset for the given boxtype.

static int Fl::check()

Same as Fl::wait(0). Calling this during a big calculation will keep the screen up to date and the
interface responsive:

while (!calculation_done()) {
 calculate();
 Fl::check();
 if (user_hit_abort_button()) break;
}

The returns non−zero if any windows are displayed, and 0 if no windows are displayed (this is likely to
change in future versions of fltk).

static int Fl::damage()

If true then flush() will do something.

FLTK 1.0.11 Programming Manual

224 Fl:: Methods

static void Fl::display(const char *)

Sets the X display to use for all windows. Actually this just sets the environment variable $DISPLAY to the
passed string, so this only works before you show() the first window or otherwise open the display, and does
nothing useful under WIN32.

static void Fl::enable_symbols()

Enables the symbol drawing code.

static int Fl::event_button()

Returns which mouse button was pressed. This returns garbage if the most recent event was not a
FL_PUSH or FL_RELEASE event.

int Fl::event_clicks()
void Fl::event_clicks(int)

The first form returns non−zero if the most recent FL_PUSH or FL_KEYBOARD was a "double click".
Returns N−1 for N clicks. A double click is counted if the same button is pressed again while
event_is_click() is true.

The second form directly sets the number returned by Fl::event_clicks(). This can be used to set it to
zero so that later code does not think an item was double−clicked.

int Fl::event_inside(const Fl_Widget *) const
int Fl::event_inside(int x, int y, int w, int h)

Returns non−zero if the current event_x and event_y put it inside the widget or inside an arbitrary
bounding box. You should always call this rather than doing your own comparison so you are consistent
about edge effects.

int Fl::event_is_click()
void Fl::event_is_click(0)

The first form returns non−zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a "drag" rather than a "click". You can test
this on FL_DRAG, FL_RELEASE, and FL_MOVE events. The second form clears the value returned by
Fl::event_is_click(). Useful to prevent the next click from being counted as a double−click or to
make a popup menu pick an item with a single click. Don't pass non−zero to this.

int Fl::event_key()
int Fl::event_key(int)
int Fl::get_key(int)

Fl::event_key() returns which key on the keyboard was last pushed. It returns zero if the last event was
not a key press or release.

FLTK 1.0.11 Programming Manual

Fl:: Methods 225

Fl::event_key(int) returns true if the given key was held down (or pressed) during the last event.
This is constant until the next event is read from the server.

Fl::get_key(int) returns true if the given key is held down now. Under X this requires a round−trip to
the server and is much slower than Fl::event_key(int).

Keys are identified by the unshifted values. FLTK defines a set of symbols that should work on most modern
machines for every key on the keyboard:

All keys on the main keyboard producing a printable ASCII character use the value of that ASCII
character (as though shift, ctrl, and caps lock were not on). The space bar is 32.

•

All keys on the numeric keypad producing a printable ASCII character use the value of that ASCII
character plus FL_KP. The highest possible value is FL_KP_Last so you can range−check to see if
something is on the keypad.

•

All numbered function keys use the number on the function key plus FL_F. The highest possible
number is FL_F_Last, so you can range−check a value.

•

Buttons on the mouse are considered keys, and use the button number (where the left button is 1) plus
FL_Button.

•

All other keys on the keypad have a symbol: FL_Escape, FL_BackSpace, FL_Tab,
FL_Enter, FL_Print, FL_Scroll_Lock, FL_Pause, FL_Insert, FL_Home,
FL_Page_Up, FL_Delete, FL_End, FL_Page_Down, FL_Left, FL_Up,
FL_Right, FL_Down, FL_Shift_L, FL_Shift_R, FL_Control_L,
FL_Control_R, FL_Caps_Lock, FL_Alt_L, FL_Alt_R, FL_Meta_L,
FL_Meta_R, FL_Menu, FL_Num_Lock, FL_KP_Enter. Be careful not to confuse these
with the very similar, but all−caps, symbols used by Fl::event_state() .

•

On X Fl::get_key(FL_Button+n) does not work.

On WIN32 Fl::get_key(FL_KP_Enter) and Fl::event_key(FL_KP_Enter) do not work.

char *Fl::event_length()

Returns the length of the text in Fl::event_text(). There will always be a nul at this position in the
text. However there may be a nul before that if the keystroke translates to a nul character or you paste a nul
character.

ulong Fl::event_state()
unsigned int Fl::event_state(ulong)

This is a bitfield of what shift states were on and what mouse buttons were held down during the most recent
event. The second version returns non−zero if any of the passed bits are turned on. The legal bits are:

FL_SHIFT•
FL_CAPS_LOCK•
FL_CTRL•
FL_ALT•
FL_NUM_LOCK•
FL_META•
FL_SCROLL_LOCK•
FL_BUTTON1•
FL_BUTTON2•

FLTK 1.0.11 Programming Manual

226 Fl:: Methods

FL_BUTTON3•
X servers do not agree on shift states, and FL_NUM_LOCK, FL_META, and FL_SCROLL_LOCK may not
work. The values were selected to match the XFree86 server on Linux. In addition there is a bug in the way X
works so that the shift state is not correctly reported until the first event after the shift key is pressed or
released.

char *Fl::event_text()

Returns the ASCII text (in the future this may be UTF−8) produced by the last FL_KEYBOARD or
FL_PASTEM or possibly other event. A zero−length string is returned for any keyboard function keys that do
not produce text. This pointer points at a static buffer and is only valid until the next event is processed.

Under X this is the result of calling XLookupString().

static int Fl::event_x()
static int Fl::event_y()

Returns the mouse position of the event relative to the Fl_Window it was passed to.

static int Fl::event_x_root()
static int Fl::event_y_root()

Returns the mouse position on the screen of the event. To find the absolute position of an Fl_Window on
the screen, use the difference between event_x_root(),event_y_root() and
event_x(),event_y().

static Fl_Window *Fl::first_window()

Returns the first top−level window in the list of shown() windows. If a modal() window is shown this is the
top−most modal window, otherwise it is the most recent window to get an event.

static Fl_Window *Fl::next_window(Fl_Window *)

Returns the next top−level window in the list of shown() windows. You can use this call to iterate through all
the windows that are shown().

static void Fl::first_window(Fl_Window*)

Sets the window that is returned by first_window. The window is removed from wherever it is in the list and
inserted at the top. This is not done if Fl::modal() is on or if the window is not shown(). Because the first
window is used to set the "parent" of modal windows, this is often useful.

static void Fl::flush()

Causes all the windows that need it to be redrawn and graphics forced out through the pipes. This is what
wait() does before looking for events.

FLTK 1.0.11 Programming Manual

Fl:: Methods 227

static Fl_Widget *Fl::focus() const
static void Fl::focus(Fl_Widget *)

Get or set the widget that will receive FL_KEYBOARD events.

If you change Fl::focus(), the previous widget and all parents (that don't contain the new widget) are
sent FL_UNFOCUS events. Changing the focus does not send FL_FOCUS to this or any widget, because
sending FL_FOCUS is supposed to test if the widget wants the focus (by it returning non−zero from
handle()).

static void Fl::foreground(uchar, uchar, uchar)

Changes fl_color(FL_BLACK). Also changes FL_INACTIVE_COLOR and
FL_SELECTION_COLOR to be a ramp between this and FL_WHITE.

static void Fl::free_color(Fl_Color, int overlay = 0)

Frees the specified color from the colormap, if applicable. If overlay is non−zero then the color is freed
from the overlay colormap.

static unsigned Fl::get_color(Fl_Color)
static void Fl::get_color(Fl_Color, uchar &r, uchar &g, uchar &b)

Returns the color index or RGB value for the given FLTK color index.

static const char *Fl::get_font(int face)

Get the string for this face. This string is different for each face. Under X this value is passed to XListFonts to
get all the sizes of this face.

static const char *Fl::get_font_name(int face, int *attributes = 0)

Get a human−readable string describing the family of this face. This is useful if you are presenting a choice to
the user. There is no guarantee that each face has a different name. The return value points to a static buffer
that is overwritten each call.

The integer pointed to by attributes (if the pointer is not zero) is set to zero, FL_BOLD or
FL_ITALIC or FL_BOLD | FL_ITALIC. To locate a "family" of fonts, search forward and back for a set
with non−zero attributes, these faces along with the face with a zero attribute before them constitute a family.

int get_font_sizes(int face, int *&sizep)

Return an array of sizes in sizep. The return value is the length of this array. The sizes are sorted from
smallest to largest and indicate what sizes can be given to fl_font() that will be matched exactly
(fl_font() will pick the closest size for other sizes). A zero in the first location of the array indicates a
scalable font, where any size works, although the array may list sizes that work "better" than others. Warning:
the returned array points at a static buffer that is overwritten each call. Under X this will open the display.

FLTK 1.0.11 Programming Manual

228 Fl:: Methods

static void Fl::get_mouse(int &x, int &y)

Return where the mouse is on the screen by doing a round−trip query to the server. You should use
Fl::event_x_root() and Fl::event_y_root() if possible, but this is necessary if you are not sure
if a mouse event has been processed recently (such as to position your first window). If the display is not
open, this will open it.

static void Fl::get_system_colors()

Read the user preference colors from the system and use them to call Fl::foreground(),
Fl::background(), and Fl::background2(). This is done by
Fl_Window::show(argc,argv) before applying the −fg and −bg switches.

On X this reads some common values from the Xdefaults database. KDE users can set these values by
running the "krdb" program, and newer versions of KDE set this automatically if you check the "apply style
to other X programs" switch in their control panel.

static int Fl::gl_visual(int)

This does the same thing as Fl::visual(int) but also requires OpenGL drawing to work. This must be
done if you want to draw in normal windows with OpenGL with gl_start() and gl_end(). It may be
useful to call this so your X windows use the same visual as an Fl_Gl_Window, which on some servers
will reduce colormap flashing.

See Fl_Gl_Window for a list of additional values for the argument.

static void Fl::grab(Fl_Window*)
static Fl_Window* Fl::grab()

This is used when pop−up menu systems are active. Send all events to the passed window no matter where
the pointer or focus is (including in other programs). The window does not have to be shown() , this lets
the handle() method of a "dummy" window override all event handling and allows you to map and unmap
a complex set of windows (under both X and WIN32 some window must be mapped because the system
interface needs a window id).

If grab() is on it will also affect show() of windows by doing system−specific operations (on X it turns on
override−redirect). These are designed to make menus popup reliably and faster on the system.

To turn off grabbing do Fl::grab(0).

Be careful that your program does not enter an infinite loop while grab() is on. On X this will lock up your
screen!

static int Fl::h()

Returns the height of the screen in pixels.

FLTK 1.0.11 Programming Manual

Fl:: Methods 229

static int Fl::handle(int, Fl_Window *)

Sends the event to a window for processing. Returns non−zero if any widget uses the event.

static const char *Fl::help

This is the usage string that is displayed if Fl::args() detects an invalid argument on the command−line.

static Fl_Window *Fl::modal()

Returns the top−most modal() window currently shown. This is the most recently shown() window with
modal() true, or NULL if there are no modal() windows shown(). The modal() window has its
handle() method called for all events, and no other windows will have handle() called
(grab() overrides this).

static void Fl::own_colormap()

Makes FLTK use its own colormap. This may make FLTK display better and will reduce conflicts with other
programs that want lots of colors. However the colors may flash as you move the cursor between windows.

This does nothing if the current visual is not colormapped.

static void Fl::paste(Fl_Widget *receiver)

Set things up so the receiver widget will be called with an FL_PASTE event some time in the future. The
reciever should be prepared to be called directly by this, or for it to happen later, or possibly not at all. This
allows the window system to take as long as necessary to retrieve the paste buffer (or even to screw up
completely) without complex and error−prone synchronization code in FLTK.

static Fl_Widget *Fl::pushed() const
static void Fl::pushed(Fl_Widget *)

Get or set the widget that is being pushed. FL_DRAG or FL_RELEASE (and any more FL_PUSH) events will
be sent to this widget.

If you change the pushed widget, the previous one and all parents (that don't contain the new widget) are sent
FL_RELEASE events. Changing this does not send FL_PUSH to this or any widget, because sending
FL_PUSH is supposed to test if the widget wants the mouse (by it returning non−zero from handle()).

static Fl_Widget *Fl::readqueue()

All Fl_Widgets that don't have a callback defined use a default callback that puts a pointer to the widget in
this queue, and this method reads the oldest widget out of this queue.

static int Fl::ready()

This is similar to Fl::check() except this does not call Fl::flush() or any callbacks, which is useful
if your program is in a state where such callbacks are illegal. This returns true if Fl::check() would do

FLTK 1.0.11 Programming Manual

230 Fl:: Methods

anything (it will continue to return true until you call Fl::check() or Fl::wait()).

while (!calculation_done()) {
 calculate();
 if (Fl::ready()) {
 do_expensive_cleanup();
 Fl::check();
 if (user_hit_abort_button()) break;
 }
}

static void Fl::redraw()

Redraws all widgets.

static int Fl::has_idle(void (*cb)(void*), void* = 0)

Returns true if the specified idle callback is currently installed.

static void Fl::remove_idle(void (*cb)(void*), void* = 0)

Removes the specified idle callback, if it is installed.

static int Fl::has_timeout(void (*cb)(void*), void* = 0)

Returns true if the timeout exists and has not been called yet.

static void Fl::remove_timeout(void (*cb)(void*), void* = 0)

Removes a timeout callback. It is harmless to remove a timeout callback that no longer exists.

static int Fl::has_check(void (*cb)(void*), void* = 0)

Returns true if the check exists and has not been called yet.

static void Fl::remove_check(void (*cb)(void*), void* = 0)

Removes a check callback. It is harmless to remove a check callback that no longer exists.

static Fl::run()

As long as any windows are displayed this calls Fl::wait() repeatedly. When all the windows are closed
it returns zero (supposedly it would return non−zero on any errors, but fltk calls exit directly for these). A
normal program will end main() with return Fl::run();.

static void Fl::selection(Fl_Widget *owner, const char *stuff, int len)
static const char* Fl::selection()
static int Fl::selection_length()

FLTK 1.0.11 Programming Manual

Fl:: Methods 231

The first form changes the current selection. The block of text is copied to an internal buffer by FLTK (be
careful if doing this in response to an FL_PASTE as this may be the same buffer returned by
event_text()). The selection_owner() widget is set to the passed owner (possibly sending
FL_SELECTIONCLEAR to the previous owner). The second form looks at the buffer containing the current
selection. The contents of this buffer are undefined if this program does not own the current selection.

static Fl_Widget *Fl::selection_owner() const
static void Fl::selection_owner(Fl_Widget *)

The single−argument selection_owner(x) call can be used to move the selection to another widget or
to set the owner to NULL, without changing the actual text of the selection. FL_SELECTIONCLEAR is sent
to the previous selection owner, if any.

Copying the buffer every time the selection is changed is obviously wasteful, especially for large selections.
An interface will probably be added in a future version to allow the selection to be made by a callback
function. The current interface will be emulated on top of this.

static void Fl::set_boxtype(Fl_Boxtype, Fl_Box_Draw_F *, uchar, uchar,
uchar, uchar)
static void Fl::set_boxtype(Fl_Boxtype, Fl_Boxtype from)

The first form sets the function to call to draw a specific boxtype.

The second form copies the from boxtype.

static void Fl::set_color(Fl_Color, uchar r, uchar g, uchar b)

Sets an entry in the fl_color index table. You can set it to any 8−bit RGB color. The color is not allocated
until fl_color(i) is used.

static int Fl::set_font(int face, const char *)
static int Fl::set_font(int face, int from)

The first form changes a face. The string pointer is simply stored, the string is not copied, so the string must
be in static memory.

The second form copies one face to another.

int Fl::set_fonts(const char * = 0)

FLTK will open the display, and add every font on the server to the face table. It will attempt to put
"families" of faces together, so that the normal one is first, followed by bold, italic, and bold italic.

The optional argument is a string to describe the set of fonts to add. Passing NULL will select only fonts that
have the ISO8859−1 character set (and are thus usable by normal text). Passing "−*" will select all fonts with
any encoding as long as they have normal X font names with dashes in them. Passing "*" will list every font
that exists (on X this may produce some strange output). Other values may be useful but are system
dependent. With WIN32 NULL selects fonts with ISO8859−1 encoding and non−NULL selects all fonts.

FLTK 1.0.11 Programming Manual

232 Fl:: Methods

The return value is how many faces are in the table after this is done.

static void Fl::set_labeltype(Fl_Labeltype, Fl_Label_Draw_F *,
Fl_Label_Measure_F *)
static void Fl:set_labeltype(Fl_Labeltype, Fl_Labeltype from)

The first form sets the functions to call to draw and measure a specific labeltype.

The second form copies the from labeltype.

int Fl::test_shortcut(ulong) const

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value
(described in Fl_Button). Returns non−zero if there is a match. Not to be confused with
Fl_Widget::test_shortcut().

static int Fl::visual(int)

Selects a visual so that your graphics are drawn correctly. This is only allowed before you call show() on any
windows. This does nothing if the default visual satisfies the capabilities, or if no visual satisfies the
capabilities, or on systems that don't have such brain−dead notions.

Only the following combinations do anything useful:

Fl::visual(FL_RGB)
Full/true color (if there are several depths FLTK chooses the largest). Do this if you use
fl_draw_image for much better (non−dithered) output.

•

Fl::visual(FL_RGB8)
Full color with at least 24 bits of color. FL_RGB will always pick this if available, but if not it will
happily return a less−than−24 bit deep visual. This call fails if 24 bits are not available.

•

Fl::visual(FL_DOUBLE|FL_INDEX)
Hardware double buffering. Call this if you are going to use Fl_Double_Window.

•

Fl::visual(FL_DOUBLE|FL_RGB)•
Fl::visual(FL_DOUBLE|FL_RGB8)
Hardware double buffering and full color.

•

This returns true if the system has the capabilities by default or FLTK suceeded in turing them on. Your
program will still work even if this returns false (it just won't look as good).

static int Fl::w()

Returns the width of the screen in pixels.

static int Fl::wait()

Waits until "something happens" and then returns. Call this repeatedly to "run" your program. You can also
check what happened each time after this returns, which is quite useful for managing program state.

FLTK 1.0.11 Programming Manual

Fl:: Methods 233

What this really does is call all idle callbacks, all elapsed timeouts, call Fl::flush() to get the screen to
update, and then wait some time (zero if there are idle callbacks, the shortest of all pending timeouts, or
infinity), for any events from the user or any Fl::add_fd() callbacks. It then handles the events and calls
the callbacks and then returns.

The return value is non−zero if there are any visible windows (this may change in future versions of fltk).

static double Fl::wait(double time)

Same as Fl::wait() except it waits a maximum of time seconds. It can return much sooner if something
happens.

The return value is positive if an event or fd happens before the time elapsed. It is zero if nothing happens (on
Win32 this will only return zero if time is zero). It is negative if an error occurs (this will happen on Unix if a
signal happens).

static void (*Fl::warning)(const char *, ...)
static void (*Fl::error)(const char *, ...)
static void (*Fl::fatal)(const char *, ...)

FLTK will call these to print messages when unexpected conditions occur. By default they fprintf to
stderr, and Fl::error and Fl::fatal call exit(1). You can override the behavior by setting the
function pointers to your own routines.

Fl::warning means that there was a recoverable problem, the display may be messed up but the user can
probably keep working (all X protocol errors call this). Fl::error means there is a recoverable error, but
the display is so messed up it is unlikely the user can continue (very little calls this now). Fl::fatal must
not return, as FLTK is in an unusable state, however your version may be able to use longjmp or an
exception to continue, as long as it does not call FLTK again.

FLTK 1.0.11 Programming Manual

234 Fl:: Methods

C − FLTK Enumerations

This appendix lists the enumerations provided in the <FL/Enumerations.H> header file, organized by
section. Constants whose value is zero are marked with "(0)", this is often useful to know when
programming.

Version Numbers

The FLTK version number is stored in a number of compile−time constants:

FL_MAJOR_VERSION − The major release number, currently 1. •
FL_MINOR_VERSION − The minor release number, currently 0. •
FL_PATCH_VERSION − The patch release number, currently 0. •
FL_VERSION − A combined floating−point version number for the major and minor release
numbers, currently 1.0.

•

Events

Events are identified by an Fl_Event enumeration value. The following events are currently defined:

FL_NO_EVENT − No event (or an event fltk does not understand) occurred (0).•
FL_PUSH − A mouse button was pushed. •
FL_RELEASE − A mouse button was released. •
FL_ENTER − The mouse pointer entered a widget. •
FL_LEAVE − The mouse pointer left a widget. •

C − FLTK Enumerations 235

FL_DRAG − The mouse pointer was moved with a button pressed. •
FL_FOCUS − A widget should receive keyboard focus. •
FL_UNFOCUS − A widget loses keyboard focus. •
FL_KEYBOARD − A key was pressed. •
FL_CLOSE − A window was closed. •
FL_MOVE − The mouse pointer was moved with no buttons pressed. •
FL_SHORTCUT − The user pressed a shortcut key. •
FL_DEACTIVATE − The widget has been deactivated. •
FL_ACTIVATE − The widget has been activated. •
FL_HIDE − The widget has been hidden. •
FL_SHOW − The widget has been shown. •
FL_PASTE − The widget should paste the contents of the clipboard. •
FL_SELECTIONCLEAR − The widget should clear any selections made for the clipboard. •

Callback "When" Conditions

The following constants determine when a callback is performed:

FL_WHEN_NEVER − Never call the callback (0). •
FL_WHEN_CHANGED − Do the callback only when the widget value changes. •
FL_WHEN_NOT_CHANGED − Do the callback whenever the user interacts with the widget. •
FL_WHEN_RELEASE − Do the callback when the button or key is released and the value changes. •
FL_WHEN_ENTER_KEY − Do the callback when the user presses the ENTER key and the value
changes.

•

FL_WHEN_RELEASE_ALWAYS − Do the callback when the button or key is released, even if the
value doesn't change.

•

FL_WHEN_ENTER_KEY_ALWAYS − Do the callback when the user presses the ENTER key, even if
the value doesn't change.

•

Fl::event_button() Values

The following constants define the button numbers for FL_PUSH and FL_RELEASE events:

FL_LEFT_MOUSE − the left mouse button •
FL_MIDDLE_MOUSE − the middle mouse button •
FL_RIGHT_MOUSE − the right mouse button •

Fl::event_key() Values

The following constants define the non−ASCII keys on the keyboard for FL_KEYBOARD and
FL_SHORTCUT events:

FL_Button − A mouse button; use Fl_Button + n for mouse button n. •
FL_BackSpace − The backspace key. •
FL_Tab − The tab key. •
FL_Enter − The enter key. •
FL_Pause − The pause key. •
FL_Scroll_Lock − The scroll lock key. •
FL_Escape − The escape key. •

FLTK 1.0.11 Programming Manual

236 Callback "When" Conditions

FL_Home − The home key. •
FL_Left − The left arrow key. •
FL_Up − The up arrow key. •
FL_Right − The right arrow key. •
FL_Down − The down arrow key. •
FL_Page_Up − The page−up key. •
FL_Page_Down − The page−down key. •
FL_End − The end key. •
FL_Print − The print (or print−screen) key. •
FL_Insert − The insert key. •
FL_Menu − The menu key. •
FL_Num_Lock − The num lock key. •
FL_KP − One of the keypad numbers; use FL_KP + n for number n. •
FL_KP_Enter − The enter key on the keypad. •
FL_F − One of the function keys; use FL_F + n for function key n. •
FL_Shift_L − The lefthand shift key. •
FL_Shift_R − The righthand shift key. •
FL_Control_L − The lefthand control key. •
FL_Control_R − The righthand control key. •
FL_Caps_Lock − The caps lock key. •
FL_Meta_L − The left meta/Windows key. •
FL_Meta_R − The right meta/Windows key. •
FL_Alt_L − The left alt key. •
FL_Alt_R − The right alt key. •
FL_Delete − The delete key. •

Fl::event_state() Values

The following constants define bits in the Fl::event_state() value:

FL_SHIFT − One of the shift keys is down. •
FL_CAPS_LOCK − The caps lock is on. •
FL_CTRL − One of the ctrl keys is down. •
FL_ALT − One of the alt keys is down. •
FL_NUM_LOCK − The num lock is on. •
FL_META − One of the meta/Windows keys is down. •
FL_SCROLL_LOCK − The scroll lock is on. •
FL_BUTTON1 − Mouse button 1 is pushed. •
FL_BUTTON2 − Mouse button 2 is pushed. •
FL_BUTTON3 − Mouse button 3 is pushed. •

Alignment Values

The following constants define bits that can be used with Fl_Widget::align() to control the positioning
of the label:

FL_ALIGN_CENTER − The label is centered (0). •
FL_ALIGN_TOP − The label is top−aligned. •
FL_ALIGN_BOTTOM − The label is bottom−aligned. •
FL_ALIGN_LEFT − The label is left−aligned. •

FLTK 1.0.11 Programming Manual

Fl::event_state() Values 237

FL_ALIGN_RIGHT − The label is right−aligned. •
FL_ALIGN_CLIP − The label is clipped to the widget. •
FL_ALIGN_WRAP − The label text is wrapped as needed. •
FL_ALIGN_TOP_LEFT•
FL_ALIGN_TOP_RIGHT•
FL_ALIGN_BOTTOM_LEFT•
FL_ALIGN_BOTTOM_RIGHT•
FL_ALIGN_LEFT_TOP•
FL_ALIGN_RIGHT_TOP•
FL_ALIGN_LEFT_BOTTOM•
FL_ALIGN_RIGHT_BOTTOM•
FL_ALIGN_INSIDE − 'or' this with other values to put label inside the widget. •

Fonts

The following constants define the standard FLTK fonts:

FL_HELVETICA − Helvetica (or Arial) normal (0). •
FL_HELVETICA_BOLD − Helvetica (or Arial) bold. •
FL_HELVETICA_ITALIC − Helvetica (or Arial) oblique. •
FL_HELVETICA_BOLD_ITALIC − Helvetica (or Arial) bold−oblique. •
FL_COURIER − Courier normal. •
FL_COURIER_BOLD − Courier bold. •
FL_COURIER_ITALIC − Courier italic. •
FL_COURIER_BOLD_ITALIC − Courier bold−italic. •
FL_TIMES − Times roman. •
FL_TIMES_BOLD − Times bold. •
FL_TIMES_ITALIC − Times italic. •
FL_TIMES_BOLD_ITALIC − Times bold−italic. •
FL_SYMBOL − Standard symbol font. •
FL_SCREEN − Default monospaced screen font. •
FL_SCREEN_BOLD − Default monospaced bold screen font. •
FL_ZAPF_DINGBATS − Zapf−dingbats font. •

Colors

The following color constants can be used to access the colors in the FLTK standard color palette:

FL_BLACK − the default label color (0)•
FL_RED•
FL_GREEN•
FL_YELLOW•
FL_BLUE•
FL_MAGENTA•
FL_CYAN•
FL_WHITE − the default background for text•
FL_SELECTION_COLOR − change to dark blue for Windows style•
FL_GRAY − the default color.•

In addition there are two inline functions to allow you to select grays or colors from the FLTK colormap:

FLTK 1.0.11 Programming Manual

238 Fonts

Fl_Color fl_gray_ramp(int i)
Returns a gray color. Returns black for zero, returns white for FL_NUM_GRAY (which is 24) minus 1. To get
the closest to an 8−bit gray value 'I' use fl_gray_ramp(I*FL_NUM_GRAY/256)

Fl_Color fl_color_cube(int r, int g, int b)
Returns a color out of the color cube. r must be in the range 0 to FL_NUM_RED (5) minus 1. g must be in
the range 0 to FL_NUM_GREEN (8) minus 1. b must be in the range 0 to FL_NUM_BLUE (5) minus 1. To
get the closest color to a 8−bit set of R,G,B values use fl_color_cube(R*FL_NUM_RED/256,
G*FL_NUM_GREEN/256, B*FL_NUM_BLUE/256);

Cursors

The following constants define the mouse cursors that are available in FLTK. The double−headed arrows are
bitmaps provided by FLTK on X, the others are provided by system−defined cursors.

FL_CURSOR_DEFAULT − the default cursor, usually an arrow (0)•
FL_CURSOR_ARROW − an arrow pointer •
FL_CURSOR_CROSS − crosshair •
FL_CURSOR_WAIT − watch or hourglass •
FL_CURSOR_INSERT − I−beam •
FL_CURSOR_HAND − hand (uparrow on MSWindows) •
FL_CURSOR_HELP − question mark •
FL_CURSOR_MOVE − 4−pointed arrow •
FL_CURSOR_NS − up/down arrow •
FL_CURSOR_WE − left/right arrow •
FL_CURSOR_NWSE − diagonal arrow •
FL_CURSOR_NESW − diagonal arrow •
FL_CURSOR_NONE − invisible •

FD "When" Conditions

FL_READ − Call the callback when there is data to be read. •
FL_WRITE − Call the callback when data can be written without blocking. •
FL_EXCEPT − Call the callback if an exception occurs on the file. •

Damage Masks

The following damage mask bits are used by the standard FLTK widgets:

FL_DAMAGE_CHILD − A child needs to be redrawn. •
FL_DAMAGE_EXPOSE − The window was exposed. •
FL_DAMAGE_SCROLL − The Fl_Scroll widget was scrolled. •
FL_DAMAGE_OVERLAY − The overlay planes need to be redrawn. •
FL_DAMAGE_ALL − Everything needs to be redrawn. •

FLTK 1.0.11 Programming Manual

Cursors 239

FLTK 1.0.11 Programming Manual

240 Cursors

D − GLUT Compatibility

This appendix describes the GLUT compatibility header file supplied with FLTK.

Using the GLUT Compatibility Header File

You should be able to compile existing GLUT source code by including <FL/glut.H> instead of
<GL/glut.h>. This can be done by editing the source, by changing the −I switches to the compiler, or by
providing a symbolic link from GL/glut.h to FL/glut.H.

All files calling GLUT procedures must be compiled with C++. You may have to alter them slightly to get
them to compile without warnings, and you may have to rename them to get make to use the C++ compiler.

You must link with the FLTK library. If you call any GLUT drawing functions that FLTK does not emulate
(glutExtensionsSupported() , glutWire*(), glutSolid*(), and glutStroke*()), you
will also have to link with the GLUT library (after the FLTK library!)

Most of FL/glut.H is inline functions. You should take a look at it (and maybe at
test/glpuzzle.cxx in the FLTK source) if you are having trouble porting your GLUT program.

This has been tested with most of the demo programs that come with the GLUT 3.3 distribution.

Known Problems

D − GLUT Compatibility 241

The following functions and/or arguments to functions are missing, and you will have to replace them or
comment them out for your code to compile:

glutLayerGet(GLUT_LAYER_IN_USE)•
glutLayerGet(GLUT_HAS_OVERLAY)•
glutSetColor(), glutGetColor(), glutCopyColormap()•
glutInitDisplayMode(GLUT_STEREO)•
glutInitDisplayMode(GLUT_LUMINANCE)•
glutPushWindow()•
glutWarpPointer()•
Spaceball, buttonbox, dials, tablet functions, glutDeviceGet()•
glutWindowStatusFunc()•
glutGet(GLUT_WINDOW_NUM_CHILDREN)•
glutGet(GLUT_SCREEN_WIDTH_MM)•
glutGet(GLUT_SCREEN_HEIGHT_MM)•
glutGet(GLUT_ELAPSED_TIME)•
glutVideoResize() missing. •

Most of the symbols/enumerations have different values than GLUT uses. This will break code that relies on
the actual values. The only symbols guaranteed to have the same values are true/false pairs like GLUT_DOWN
and GLUT_UP, mouse buttons GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON,
GLUT_RIGHT_BUTTON, and GLUT_KEY_F1 thru F12.

The strings passed as menu labels are not copied.

glutPostRedisplay() does not work if called from inside a display function. You must use
glutIdleFunc() if you want your display to update continuously.

glutSwapBuffers() does not work from inside a display function. This is on purpose, because FLTK
swaps the buffers for you.

glutUseLayer() does not work well, and should only be used to initialize transformations inside a resize
callback. You should redraw overlays by using glutOverlayDisplayFunc().

Overlays are cleared before the overlay display function is called.
glutLayerGet(GLUT_OVERLAY_DAMAGED) always returns true for compatibility with some GLUT
overlay programs. You must rewrite your code so that gl_color() is used to choose colors in an overlay,
or you will get random overlay colors.

glutSetCursor(GLUT_CURSOR_FULL_CROSSHAIR) just results in a small crosshair.

The fonts used by glutBitmapCharacter() and glutBitmapWidth() may be different.

glutInit(argc,argv) will consume different switches than GLUT does. It accepts the switches
recognized by Fl::args(), and will accept any abbreviation of these switches (such as "−di" for
"−display").

Mixing GLUT and FLTK Code

You can make your GLUT window a child of a Fl_Window with the following scheme. The biggest trick is
that GLUT insists on show() 'ing the window at the point it is created, which means the Fl_Window parent

FLTK 1.0.11 Programming Manual

242 Mixing GLUT and FLTK Code

window must already be shown.

Don't call glutInit(). •
Create your Fl_Window, and any FLTK widgets. Leave a blank area in the window for your GLUT
window.

•

show() the Fl_Window. Perhaps call show(argc,argv). •
Call window−>begin() so that the GLUT window will be automatically added to it. •
Use glutInitWindowSize() and glutInitWindowPosition() to set the location in the
parent window to put the GLUT window.

•

Put your GLUT code next. It probably does not need many changes. Call
window−>end() immediately after the glutCreateWindow()!

•

You can call either glutMainLoop(), Fl::run(), or loop calling Fl::wait() to run the
program.

•

FLTK 1.0.11 Programming Manual

Mixing GLUT and FLTK Code 243

class Fl_Glut_Window

Class Hierarchy

Fl_Gl_Window
 |
 +−−−−Fl_Glut_Window

Include Files

#include <FL/glut.H>

Description

Each GLUT window is an instance of this class. You may find it useful to manipulate instances directly
rather than use GLUT window id's. These may be created without opening the display, and thus can fit better
into FLTK's method of creating windows.

The current GLUT window is available in the global variable glut_window.

new Fl_Glut_Window(...) is the same as glutCreateWindow() except it does not show() the
window or make the window current.

window−>make_current() is the same as glutSetWindow(number). If the window has not had
show() called on it yet, some functions that assumme an OpenGL context will not work. If you do
show() the window, call make_current() again to set the context.

~Fl_Glut_Window() is the same as glutDestroyWindow() .

Members

The Fl_Glut_Window class contains several public members that can be altered directly:

member description

display A pointer to the function to call to draw the normal planes.

entry
A pointer to the function to call when the mouse moves into or out of
the window.

keyboard A pointer to the function to call when a regular key is pressed.

menu[3] The menu to post when one of the mouse buttons is pressed.

mouse A pointer to the function to call when a button is pressed or released.

motion
A pointer to the function to call when the mouse is moved with a
button down.

overlaydisplayA pointer to the function to call to draw the overlay planes.

passivemotion
A pointer to the function to call when the mouse is moved with no
buttons down.

reshape A pointer to the function to call when the window is resized.

FLTK 1.0.11 Programming Manual

244 class Fl_Glut_Window

special A pointer to the function to call when a special key is pressed.

visibility
A pointer to the function to call when the window is iconified or
restored (made visible.)

Methods

Fl_Glut_Window•
~Fl_Glut_Window•
make_current•

Fl_Glut_Window::Fl_Glut_Window(int x, int y, int w, int h, const char *title = 0)
Fl_Glut_Window::Fl_Glut_Window(int w, int h, const char *title = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The second
constructor with 2 arguments will create the window with a preset size, but the window manager will choose
the position according to it's own whims.

virtual Fl_Glut_Window::~Fl_Glut_Window()

Destroys the GLUT window.

void Fl_Glut_Window::make_current()

Switches all drawing functions to the GLUT window.

FLTK 1.0.11 Programming Manual

class Fl_Glut_Window 245

FLTK 1.0.11 Programming Manual

246 class Fl_Glut_Window

E − Forms Compatibility

This appendix describes the Forms compatibility included with FLTK.

Importing Forms Layout Files

FLUID can read the .fd files put out by all versions of Forms and XForms fdesign. However, it will mangle
them a bit, but it prints a warning message about anything it does not understand. FLUID cannot write
fdesign files, so you should save to a new name so you don't write over the old one.

You will need to edit your main code considerably to get it to link with the output from FLUID. If you are
not interested in this you may have more immediate luck with the forms compatibility header,
<FL/forms.H>.

Using the Compatibility Header File

You should be able to compile existing Forms or XForms source code by changing the include directory
switch to your compiler so that the forms.h file supplied with FLTK is included. Take a look at forms.h
to see how it works, but the basic trick is lots of inline functions. Most of the XForms demo programs work
without changes.

You will also have to compile your Forms or XForms program using a C++ compiler. The FLTK library does
not provide C bindings or header files.

E − Forms Compatibility 247

Although FLTK was designed to be compatable with the GL Forms library (version 0.3 or so), XForms has
bloated severely and it's interface is X−specific. Therefore, XForms compatibility is no longer a goal of
FLTK. Compatibility was limited to things that were free, or that would add code that would not be linked in
if the feature is unused, or that was not X−specific.

To use any new features of FLTK, you should rewrite your code to not use the inline functions and instead
use "pure" FLTK. This will make it a lot cleaner and make it easier to figure out how to call the FLTK
functions. Unfortunately this conversion is harder than expected and even Digital Domain's inhouse code still
uses forms.H a lot.

Problems You Will Encounter

Many parts of XForms use X−specific structures like XEvent in their interface. I did not emulate these!
Unfortunately these features (such as the "canvas" widget) are needed by most large programs. You will need
to rewrite these to use FLTK subclasses.

Fl_Free widgets emulate the old Forms "free" widget. It may be useful for porting programs that change
the handle() function on widgets, but you will still need to rewrite things.

Fl_Timer widgets are provided to emulate the XForms timer. These work, but are quite inefficient and
inaccurate compared to using Fl::add_timeout().

All instance variables are hidden. If you directly refer to the x, y, w, h, label, or other fields of your Forms
widgets you will have to add empty parenthesis after each reference. The easiest way to do this is to globally
replace "−>x" with "−>x()", etc. Replace "boxtype" with "box()".

const char * arguments to most FLTK methods are simply stored, while Forms would strdup() the
passed string. This is most noticable with the label of widgets. Your program must always pass static data
such as a string constant or malloc'd buffer to label(). If you are using labels to display program output
you may want to try the Fl_Output widget.

The default fonts and sizes are matched to the older GL version of Forms, so all labels will draw somewhat
larger than an XForms program does.

fdesign outputs a setting of a "fdui" instance variable to the main window. I did not emulate this because I
wanted all instance variables to be hidden. You can store the same information in the user_data() field
of a window. To do this, search through the fdesign output for all occurances of "−>fdui" and edit to use
"−>user_data()" instead. This will require casts and is not trivial.

The prototype for the functions passed to fl_add_timeout() and
fl_set_idle_callback() callback are different.

All the following XForms calls are missing:

FL_REVISION, fl_library_version()•
FL_RETURN_DBLCLICK (use Fl::event_clicks()) •
fl_add_signal_callback()•
fl_set_form_atactivate() fl_set_form_atdeactivate()•
fl_set_form_property()•
fl_set_app_mainform(), fl_get_app_mainform()•

FLTK 1.0.11 Programming Manual

248 Problems You Will Encounter

fl_set_form_minsize(), fl_set_form_maxsize()•
fl_set_form_event_cmask(), fl_get_form_event_cmask()•
fl_set_form_dblbuffer(), fl_set_object_dblbuffer() (use an
Fl_Double_Window instead)

•

fl_adjust_form_size()•
fl_register_raw_callback()•
fl_set_object_bw(), fl_set_border_width()•
fl_set_object_resize(), fl_set_object_gravity()•
fl_set_object_shortcutkey()•
fl_set_object_automatic()•
fl_get_object_bbox() (maybe FLTK should do this) •
fl_set_object_prehandler(), fl_set_object_posthandler()•
fl_enumerate_fonts()•
Most drawing functions •
fl_set_coordunit() (FLTK uses pixels all the time) •
fl_ringbell()•
fl_gettime()•
fl_win*() (all these functions) •
fl_initialize(argc,argv,x,y,z) ignores last 3 arguments •
fl_read_bitmapfile(), fl_read_pixmapfile()•
fl_addto_browser_chars()•
FL_MENU_BUTTON just draws normally •
fl_set_bitmapbutton_file(), fl_set_pixmapbutton_file()•
FL_CANVAS objects •
FL_DIGITAL_CLOCK (comes out analog) •
fl_create_bitmap_cursor(), fl_set_cursor_color()•
fl_set_dial_angles()•
fl_show_oneliner()•
fl_set_choice_shortcut(a,b,c) •
command log •
Only some of file selector is emulated •
FL_DATE_INPUT•
fl_pup*() (all these functions) •
textbox object (should be easy but I had no sample programs) •
xyplot object •

Additional Notes

These notes were written for porting programs written with the older IRISGL version of Forms. Most of these
problems are the same ones encountered when going from old Forms to XForms:

Does Not Run In Background

The IRISGL library always forked when you created the first window, unless "foreground()" was called.
FLTK acts like "foreground()" is called all the time. If you really want the fork behavior do "if (fork())
exit(0)" right at the start of your program.

FLTK 1.0.11 Programming Manual

Additional Notes 249

You Cannot Use IRISGL Windows or fl_queue

If a Forms (not XForms) program if you wanted your own window for displaying things you would create a
IRISGL window and draw in it, periodically calling Forms to check if the user hit buttons on the panels. If
the user did things to the IRISGL window, you would find this out by having the value FL_EVENT returned
from the call to Forms.

None of this works with FLTK. Nor will it compile, the necessary calls are not in the interface.

You have to make a subclass of Fl_Gl_Window and write a draw() method and handle() method. This
may require anywhere from a trivial to a major rewrite.

If you draw into the overlay planes you will have to also write a draw_overlay() method and call
redraw_overlay() on the OpenGL window.

One easy way to hack your program so it works is to make the draw() and handle() methods on your
window set some static variables, storing what event happened. Then in the main loop of your program, call
Fl::wait() and then check these variables, acting on them as though they are events read from
fl_queue.

You Must Use OpenGL to Draw Everything

The file <FL/gl.h> defines replacements for a lot of IRISGL calls, translating them to OpenGL. There are
much better translators available that you might want to investigate.

You Cannot Make Forms Subclasses

Programs that call fl_make_object or directly setting the handle routine will not compile. You have to
rewrite them to use a subclass of Fl_Widget. It is important to note that the handle() method is not
exactly the same as the handle() function of Forms. Where a Forms handle() returned non−zero, your
handle() must call do_callback(). And your handle() must return non−zero if it "understood" the
event.

An attempt has been made to emulate the "free" widget. This appears to work quite well. It may be quicker to
modify your subclass into a "free" widget, since the "handle" functions match.

If your subclass draws into the overlay you are in trouble and will have to rewrite things a lot.

You Cannot Use <device.h>

If you have written your own "free" widgets you will probably get a lot of errors about "getvaluator". You
should substitute:

Forms FLTK

MOUSE_X Fl::event_x_root()

MOUSE_Y Fl::event_y_root()

LEFTSHIFTKEY,RIGHTSHIFTKEY Fl::event_shift()

CAPSLOCKKEY Fl::event_capslock()

FLTK 1.0.11 Programming Manual

250 Additional Notes

LEFTCTRLKEY,RIGHTCTRLKEY Fl::event_ctrl()

LEFTALTKEY,RIGHTALTKEY Fl::event_alt()

MOUSE1,RIGHTMOUSE Fl::event_state()

MOUSE2,MIDDLEMOUSE Fl::event_state()

MOUSE3,LEFTMOUSE Fl::event_state()

Anything else in getvaluator and you are on your own...

Font Numbers Are Different

The "style" numbers have been changed because I wanted to insert bold−italic versions of the normal fonts. If
you use Times, Courier, or Bookman to display any text you will get a different font out of FLTK. If you are
really desperate to fix this use the following code:

fl_font_name(3,"*courier−medium−r−no*");
fl_font_name(4,"*courier−bold−r−no*");
fl_font_name(5,"*courier−medium−o−no*");
fl_font_name(6,"*times−medium−r−no*");
fl_font_name(7,"*times−bold−r−no*");
fl_font_name(8,"*times−medium−i−no*");
fl_font_name(9,"*bookman−light−r−no*");
fl_font_name(10,"*bookman−demi−r−no*");
fl_font_name(11,"*bookman−light−i−no*");

FLTK 1.0.11 Programming Manual

Additional Notes 251

FLTK 1.0.11 Programming Manual

252 Additional Notes

F − Operating System Issues

This appendix describes the X and WIN32 specific interfaces in FLTK.

X−Specific Interface

#include <FL/x.H>

On X you can include this file to access FLTK's X−specific functions. Be warned that some of the structures
and calls in it are subject to change in future version of FLTK. Try to avoid doing this so your code is
portable.

Handling Other X Events

void Fl::add_handler(int (*f)(int))

Installs a function to parse unrecognized events. If FLTK cannot figure out what to do with an event, it calls
each of these functions (most recent first) until one of them returns non−zero. If none of them returns
non−zero then the event is ignored.

FLTK calls this for any X events it does not recognize, or X events with a window id that FLTK does not
recognize. You can look at the X event with the fl_xevent variable.

The argument is zero for unrecognized X events. These handlers are also called for global shortcuts and some
other events that the widget they were passed to did not handle. In this case the argument is non−zero (for

F − Operating System Issues 253

example FL_SHORTCUT).

extern XEvent *fl_xvent

The most recent X event.

extern ulong fl_event_time

This is the time stamp from the most recent X event that reported it (not all do). Many X calls (like cut and
paste) need this value.

Window fl_xid(const Fl_Window *)

Returns the XID for a window, or zero if not shown().

Fl_Window *fl_find(ulong xid)

Returns the Fl_Window that corresponds to the given XID, or NULL if not found. This uses a cache so it is
slightly faster than iterating through the windows yourself.

int fl_handle(const XEvent &)

This call allows you to supply the X events to FLTK, which may allow FLTK to cooperate with another
toolkit or library. The return value is true if FLTK understood the event (if the window does not belong to
FLTK and the add_handler() functions all ignore it this returns false).

Besides feeding events your code should call Fl::flush() periodically so that FLTK redraws its windows.

This function will call the callback functions. It will not return until they complete. In particular if a callback
pops up a modal window (by calling fl_ask(), for instance) it will not return until the modal function
returns.

Drawing using Xlib

The following global variables are set before Fl_Widget::draw() is called, or by
Fl_Window::make_current():

extern Display *fl_display;
extern Window fl_window;
extern GC fl_gc;
extern int fl_screen;
extern XVisualInfo *fl_visual;
extern Colormap fl_colormap;

You must use them to produce Xlib calls. Don't attempt to change them. A typical X drawing call is written
like this:

XDrawSomething(fl_display, fl_window, fl_gc, ...);

Other information such as the position or size of the X window can be found by looking at
Fl_Window::current(), which returns a pointer to the Fl_Window being drawn.

FLTK 1.0.11 Programming Manual

254 X−Specific Interface

unsigned long fl_xpixel(Fl_Color i)
unsigned long fl_xpixel(uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given FLTK color index or RGB color. This is the X pixel that
fl_color() would use.

extern XFontStruct *fl_xfont

Points at the font selected by the most recent fl_font(). This is not necessarily the current font of fl_gc,
which is not set until fl_draw() is called.

Changing the Display, Screen, or X Visual

FLTK uses only a single display, screen, X visual, and X colormap. This greatly simplifies its internal
structure and makes it much smaller and faster. You can change which it uses by setting global variables
before the first Fl_Window::show() is called. You may also want to call Fl::visual() , which is a portable
interface to get a full color and/or double buffered visual.

int Fl::display(const char *)

Set which X display to use. This actually does putenv("DISPLAY=...") so that child programs will
display on the same screen if called with exec(). This must be done before the display is opened. This call
is provided under WIN32 but it has no effect.

extern Display *fl_display

The open X display. This is needed as an argument to most Xlib calls. Don't attempt to change it! This is
NULL before the display is opened.

void fl_open_display()

Opens the display. Does nothing if it is already open. This will make sure fl_display is non−zero. You
should call this if you wish to do X calls and there is a chance that your code will be called before the first
show() of a window.

This may call Fl::abort() if there is an error opening the display.

void fl_close_display()

This closes the X connection. You do not need to call this to exit, and in fact it is faster to not do so! It may
be useful to call this if you want your program to continue without the X connection. You cannot open the
display again, and probably cannot call any FLTK functions.

extern int fl_screen

Which screen number to use. This is set by fl_open_display() to the default screen. You can change it
by setting this to a different value immediately afterwards. It can also be set by changing the last number in
the Fl::display() string to "host:0,#".

FLTK 1.0.11 Programming Manual

X−Specific Interface 255

extern XVisualInfo *fl_visual
extern Colormap fl_colormap

The visual and colormap that FLTK will use for all windows. These are set by fl_open_display() to
the default visual and colormap. You can change them before calling show() on the first window. Typical
code for changing the default visual is:

Fl::args(argc, argv); // do this first so $DISPLAY is set
fl_open_display();
fl_visual = find_a_good_visual(fl_display, fl_screen);
if (!fl_visual) Fl::abort("No good visual");
fl_colormap = make_a_colormap(fl_display, fl_visual−>visual, fl_visual−>depth);
// it is now ok to show() windows:
window−>show(argc, argv);

Using a Subclass of Fl_Window for Special X Stuff

FLTK can manage an X window on a different screen, visual and/or colormap, you just can't use FLTK's
drawing routines to draw into it. But you can write your own draw() method that uses Xlib (and/or
OpenGL) calls only.

FLTK can also manage XID's provided by other libraries or programs, and call those libraries when the
window needs to be redrawn.

To do this, you need to make a subclass of Fl_Window and override some of these virtual functions:

virtual void Fl_Window::show()

If the window is already shown() this must cause it to be raised, this can usually be done by calling
Fl_Window::show(). If not shown() your implementation must call either Fl_X::set_xid() or
Fl_X::make_xid().

An example:

void MyWindow::show() {
 if (shown()) {Fl_Window::show(); return;} // you must do this!
 fl_open_display(); // necessary if this is first window
 // we only calcualte the necessary visual colormap once:
 static XVisualInfo *visual;
 static Colormap colormap;
 if (!visual) {
 visual = figure_out_visual();
 colormap = XCreateColormap(fl_display, RootWindow(fl_display,fl_screen),
 vis−>visual, AllocNone);
 }
 Fl_X::make_xid(this, visual, colormap);
}

Fl_X *Fl_X::set_xid(Fl_Window *, Window xid)

Allocate a hidden structure called an Fl_X, put the XID into it, and set a pointer to it from the Fl_Window.
This causes Fl_Window::shown() to return true.

FLTK 1.0.11 Programming Manual

256 X−Specific Interface

void Fl_X::make_xid(Fl_Window *, XVisualInfo *= fl_visual, Colormap = fl_colormap)

This static method does the most onerous parts of creating an X window, including setting the label, resize
limitations, etc. It then does Fl_X::set_xid() with this new window and maps the window.

virtual void Fl_Window::flush()

This virtual function is called by Fl::flush() to update the window. For FLTK's own windows it does
this by setting the global variables fl_window and fl_gc and then calling the draw() method. For your
own windows you might just want to put all the drawing code in here.

The X region that is a combination of all damage() calls done so far is in Fl_X::i(this)−>region.
If NULL then you should redraw the entire window. The undocumented function
fl_clip_region(XRegion) will initialize the FLTK clip stack with a region or NULL for no clipping.
You must set region to NULL afterwards as fl_clip_region() now owns it and will delete it when done.

If damage() FL_DAMAGE_EXPOSE then only X expose events have happened. This may be useful if you
have an undamaged image (such as a backing buffer) around.

Here is a sample where an undamaged image is kept somewhere:

void MyWindow::flush() {
 fl_clip_region(Fl_X::i(this)−>region);
 Fl_X::i(this)−>region = 0;
 if (damage() != 2) {... draw things into backing store ...}
 ... copy backing store to window ...
}

virtual void Fl_Window::hide()

Destroy the window server copy of the window. Usually you will destroy contexts, pixmaps, or other
resources used by the window, and then call Fl_Window::hide() to get rid of the main window
identified by xid(). If you override this, you must also override the destructor as shown:

void MyWindow::hide() {
 if (mypixmap) {
 XFreePixmap(fl_display,mypixmap);
 mypixmap = 0;
 }
 Fl_Window::hide(); // you must call this
}

virtual void Fl_Window::~Fl_Window()

Because of the way C++ works, if you override hide() you must override the destructor as well (otherwise
only the base class hide() is called):

MyWindow::~MyWindow() {
 hide();
}

FLTK 1.0.11 Programming Manual

X−Specific Interface 257

Setting the Icon of a Window

FLTK currently supports setting a window's icon *before* it is shown using the
Fl_Window::icon() method.

void Fl_Window::icon(char *)

Sets the icon for the window to the passed pointer. You will need to cast the icon Pixmap to a char
* when calling this method. To set the icon using a bitmap compiled with your application use:

#include "icon.xbm"

Pixmap p = XCreateBitmapFromData(fl_display, DefaultRootWindow(fl_display),
 icon_bits, icon_width, icon_height);

window−>icon((char *)p);

Note: you must call Fl_Window::show(argc, argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

WIN32−Specific Interface

#include <FL/x.H>

The <FL/x.H> header file defines the interface to FLTK's WIN32−specific functions. Be warned that some
of the structures and calls in it are subject to change in future version of FLTK. Try to avoid doing this so
your code is portable.

Handling Other WIN32 Messages

By default a single WNDCLASSEX called "FLTK" is created. All Fl_Windows are of this class unless you
use Fl_Window::xclass() . The window class is created the first time Fl_Window::show() is
called.

You can probably combine FLTK with other libraries that make their own WIN32 window classes. The
easiest way is to call Fl::wait() , it will call DispatchMessage for all messages to the other
windows. If necessary you can let the other library take over (as long as it calls DispatchMessage()),
but you will have to arrange for the function Fl::flush() to be called regularily so that widgets are
updated, timeouts are handled, and the idle functions are called.

extern MSG fl_msg

The most recent message read by GetMessage (which is called by Fl::wait(). This may not be the
most recent message sent to an FLTK window, because silly WIN32 calls the handle procedures directly for
some events (sigh).

void Fl::add_handler(int (*f)(int))

Install a function to parse unrecognized messages sent to FLTK windows. If FLTK cannot figure out what to
do with a message, it calls each of these functions (most recent first) until one of them returns non−zero. The
argument passed to the fuctions is zero. If all the handlers return zero then FLTK calls DefWindowProc().

FLTK 1.0.11 Programming Manual

258 X−Specific Interface

HWND fl_xid(const Fl_Window *)

Returns the window handle for a Fl_Window, or zero if not shown().

Fl_Window *fl_find(HWND xid)

Return the Fl_Window that corresponds to the given window handle, or NULL if not found. This uses a
cache so it is slightly faster than iterating through the windows yourself.

Drawing Things Using the WIN32 GDI

When the virtual function Fl_Widget::draw() is called, FLTK has stashed in some global variables all
the silly extra arguments you need to make a proper GDI call. These are:

extern HINSTANCE fl_display;
extern HWND fl_window;
extern HDC fl_gc;
COLORREF fl_RGB();
HPEN fl_pen();
HBRUSH fl_brush();

These global variables are set before draw() is called, or by Fl_Window::make_current() . You can
refer to them when needed to produce GDI calls. Don't attempt to change them. The functions return GDI
objects for the current color set by fl_color() and are created as needed and cached. A typical GDI
drawing call is written like this:

DrawSomething(fl_gc, ..., fl_brush());

It may also be useful to refer to Fl_Window::current() to get the window's size or position.

Setting the Icon of a Window

FLTK currently supports setting a window's icon *before* it is shown using the
Fl_Window::icon() method.

void Fl_Window::icon(char *)

Sets the icon for the window to the passed pointer. You will need to cast the HICON handle to a char
* when calling this method. To set the icon using an icon resource compiled with your application use:

window−>icon((char *)LoadIcon(fl_display, MAKEINTRESOURCE(IDI_ICON)));

You can also use the LoadImage() and related functions to load specific resolutions or create the icon
from bitmap data.

Note: you must call Fl_Window::show(argc, argv) for the icon to be used. The
Fl_Window::show() method does not bind the icon to the window.

How to Not Get a MSDOS Console Window

WIN32 has a really stupid mode switch stored in the executables that controls whether or not to make a

FLTK 1.0.11 Programming Manual

WIN32−Specific Interface 259

console window.

To always get a console window you simply create a console application (the "/SUBSYSTEM:CONSOLE"
option for the linker). For a GUI−only application create a WIN32 application (the
"/SUBSYSTEM:WINDOWS" option for the linker).

FLTK includes a WinMain() function that calls the ANSI standard main() entry point for you. This
function creates a console window when you use the debug version of the library.

WIN32 applications without a console cannot write to stdout or stderr, even if they are run from a
console window. Any output is silently thrown away.

Known Bugs

If a program is deactivated, Fl::wait() does not return until it is activated again, even though many
events are delivered to the program. This can cause idle background processes to stop unexpectedly. This also
happens while the user is dragging or resizing windows or otherwise holding the mouse down. I was forced to
remove most of the efficiency FLTK uses for redrawing in order to get windows to update while being
moved. This is a design error in WIN32 and probably impossible to get around.

Fl_Gl_Window::can_do_overlay() returns true until the first time it attempts to draw an overlay,
and then correctly returns whether or not there is overlay hardware.

Cut text contains ^J rather than ^M^J to break lines. This is a feature, not a bug.

SetCapture (used by Fl::grab()) doesn't work, and the main window title bar turns gray while menus
are popped up.

FLUID does not support BMP files yet.

FLTK 1.0.11 Programming Manual

260 WIN32−Specific Interface

G − Software License

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place − Suite 330, Boston, MA 02111−1307, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not

allowed.
[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the

ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public Licenses are intended to guarantee your freedom to share and change free
software−−to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software
Foundation software, and to any other libraries whose authors decide to use it. You can use it for your
libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the

G − Software License 261

software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients
all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you
link a program with the library, you must provide complete object files to the recipients so that they can
relink them with the library, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that everyone understands that there is no
warranty for this free library. If the library is modified by someone else and passed on, we want its recipients
to know that what they have is not the original version, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
companies distributing free software will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License,
which was designed for utility programs. This license, the GNU Library General Public License, applies to
certain designated libraries. This license is quite different from the ordinary one; be sure to read it in full, and
don't assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually
make between modifying or adding to a program and simply using it. Linking a program with a library,
without changing the library, is in some sense simply using the library, and is analogous to running a utility
program or application program. However, in a textual and legal sense, the linked executable is a combined
work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively
promote software sharing, because most developers did not use the libraries. We concluded that weaker
conditions might promote sharing better.

However, unrestricted linking of non−free programs would deprive the users of those programs of all benefit
from the free status of the libraries themselves. This Library General Public License is intended to permit
developers of non−free programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the actual functions of the
Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a "work based on the libary" and a "work that uses the library". The former contains code
derived from the library, while the latter only works together with the library.

FLTK 1.0.11 Programming Manual

262 G − Software License

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this
special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright
holder or other authorized party saying it may be distributed under the terms of this Library General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation in
the term "modification".)

"Source code" for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program is
covered only if its contents constitute a work based on the Library (independent of the use of the Library in a
tool for writing it). Whether that is true depends on what the Library does and what the program that uses the
Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the
files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third parties under
the terms of this License.

FLTK 1.0.11 Programming Manual

G − Software License 263

d) If a facility in the modified Library refers to a function or a table of data to be supplied by
an application program that uses the facility, other than as an argument passed when the
facility is invoked, then you must make a good faith effort to ensure that, in the event an
application does not supply such function or table, the facility still operates, and performs
whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely
well−defined independent of the application. Therefore, Subsection 2d requires that any
application−supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Library, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer
to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than
version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine−readable source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

FLTK 1.0.11 Programming Manual

264 G − Software License

However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of
the Library (because it contains portions of the Library), rather than a "work that uses the library". The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether this is
true is especially significant if the work can be linked without the Library, or if the work is itself a library.
The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a "work that uses the Library" with
the Library to produce a work containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library
and its use are covered by this License. You must supply a copy of this License. If the work during execution
displays copyright notices, you must include the copyright notice for the Library among them, as well as a
reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine−readable source code for
the Library including whatever changes were used in the work (which must be distributed
under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with
the complete machine−readable "work that uses the Library", as object code and/or source
code, so that the user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood that the user who changes the
contents of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same
user the materials specified in Subsection 6a, above, for a charge no more than the cost of
performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already
sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless

FLTK 1.0.11 Programming Manual

G − Software License 265

that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side−by−side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities is
otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based
on the Library, and explaining where to find the accompanying uncombined form of the
same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is
void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty−free redistribution of the Library by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license practices. Many people have made

FLTK 1.0.11 Programming Manual

266 G − Software License

generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify a license version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

FLTK 1.0.11 Programming Manual

G − Software License 267

END OF TERMS AND CONDITIONS

FLTK 1.0.11 Programming Manual

268 G − Software License

	Table of Contents
	Preface
	Organization
	Conventions
	Abbreviations
	Copyrights and Trademarks

	1 - Introduction to FLTK
	History of FLTK
	Features
	Licensing
	What Does "FLTK" Mean?
	Building and Installing FLTK Under UNIX
	Building FLTK Under Microsoft Windows
	Building FLTK Under OS/2
	Internet Resources
	Reporting Bugs

	2 - FLTK Basics
	Naming
	Header Files
	Compiling Programs with Standard Compilers
	Compiling Programs with Microsoft Visual C++
	Writing Your First FLTK Program

	3 - Common Widgets and Attributes
	Buttons
	Text
	Valuators
	Groups
	Setting the Size and Position of Widgets
	Colors
	Box Types
	Labels and Label Types
	Callbacks
	Shortcuts

	4 - Designing a Simple Text Editor
	Determining the Goals of the Text Editor
	Designing the Main Window
	Variables
	Menubars and Menus
	Editing the Text
	The Replace Dialog
	Callbacks
	Other Functions
	Compiling the Editor
	The Final Product

	5 - Drawing Things in FLTK
	When Can You Draw Things in FLTK?
	FLTK Drawing Functions
	Images
	class Fl_Pixmap

	6 - Handling Events
	The FLTK Event Model
	Mouse Events
	Focus Events
	Keyboard Events
	Widget Events
	Clipboard Events
	Fl::event_*() methods
	Event Propagation
	FLTK Compose-Character Sequences

	7 - Adding and Extending Widgets
	Subclassing
	Making a Subclass of Fl_Widget
	The Constructor
	Protected Methods of Fl_Widget
	Handling Events
	Drawing the Widget
	Resizing the Widget
	Making a Composite Widget
	Cut and Paste Support
	Making a subclass of Fl_Window

	8 - Programming with FLUID
	What is FLUID?
	Running FLUID Under UNIX
	Running FLUID Under Microsoft Windows
	Compiling .fl files
	A Short Tutorial
	FLUID Reference
	Internationalization with FLUID

	9 - Using OpenGL
	Using OpenGL in FLTK
	Making a Subclass of Fl_Gl_Window
	Using OpenGL in Normal FLTK Windows
	OpenGL Drawing Functions
	Speeding up OpenGL
	Using OpenGL Optimizer with FLTK

	A - Widget Reference
	Alphabetical List of Classes
	Class Hierarchy
	class Fl_Adjuster
	class Fl_Box
	class Fl_Browser
	class Fl_Browser_
	class Fl_Button
	class Fl_Chart
	class Fl_Check_Button
	class Fl_Choice
	class Fl_Clock
	class Fl_Color_Chooser
	class Fl_Counter
	class Fl_Dial
	class Fl_Double_Window
	class Fl_End
	class Fl_Float_Input
	class Fl_Free
	class Fl_Gl_Window
	class Fl_Group
	class Fl_Hold_Browser
	class Fl_Input
	class Fl_Input_
	class Fl_Int_Input
	class Fl_Light_Button
	class Fl_Menu_
	class Fl_Menu_Bar
	class Fl_Menu_Button
	struct Fl_Menu_Item
	class Fl_Menu_Window
	class Fl_Multi_Browser
	class Fl_Multiline_Input
	class Fl_Multiline_Output
	class Fl_Output
	class Fl_Overlay_Window
	class Fl_Pack
	class Fl_Positioner
	class Fl_Repeat_Button
	class Fl_Return_Button
	class Fl_Roller
	class Fl_Round_Button
	class Fl_Scroll
	class Fl_Scrollbar
	class Fl_Secret_Input
	class Fl_Select_Browser
	class Fl_Single_Window
	class Fl_Slider
	class Fl_Tabs
	class Fl_Tile
	class Fl_Timer
	class Fl_Valuator
	class Fl_Value_Input
	class Fl_Value_Output
	class Fl_Value_Slider
	class Fl_Widget
	class Fl_Window

	B - Function Reference
	Functions
	Fl:: Methods

	C - FLTK Enumerations
	Version Numbers
	Events
	Callback "When" Conditions
	Fl::event_button() Values
	Fl::event_key() Values
	Fl::event_state() Values
	Alignment Values
	Fonts
	Colors
	Cursors
	FD "When" Conditions
	Damage Masks

	D - GLUT Compatibility
	Using the GLUT Compatibility Header File
	Known Problems
	Mixing GLUT and FLTK Code
	class Fl_Glut_Window

	E - Forms Compatibility
	Importing Forms Layout Files
	Using the Compatibility Header File
	Problems You Will Encounter
	Additional Notes

	F - Operating System Issues
	X-Specific Interface
	WIN32-Specific Interface

	G - Software License

